Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T06:25:29.295Z Has data issue: false hasContentIssue false

Two Creeks Interstade Dated through Dendrochronology and AMS

Published online by Cambridge University Press:  20 January 2017

Klaus Felix Kaiser*
Affiliation:
Swiss Federal Institute of Forest, Snow and Landscape Research, WSL/FNP, CH-8905 Birmensdorf, Switzerland

Abstract

Dendrochronological analysis of fossil wood from Two Creeks, Wisconsin, reveals that the Two Creekan Intetstade lasted at least 252 yr. The sites crossdated by tree rings cover an area of about 970 km2. AMS determinations from the beginning and end of the chronology open a 14 C time window for the episode from 12,050 to 11,750 yr B.P. The interval is contemporaneous with the Older Dryas in northern Europe. The development of a forest covering at least 970 km2 on the western shore of Lake Michigan indicates a water level about as low as in modern times. Glacier retreat must have opened drainage channels either through the Straits of Mackinac or via the Indian River Plateau into the eastern lakes. The beginning of the tree-ring chronology coincides with the peak of meltwater pulse 1A at 12,000 yr B.P. Increased amounts of meltwater seem to have disturbed the heat exchange between the waters and the atmosphere in the North Atlantic off the Gulf of St. Lawrence or affected the δ18O-ratio of the evaporation, causing the climatic or isotopic reversal of the Older Dryas in Greenland and northern Europe.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acomb, L. J. Mickelson, D. M., and Evenson, E. B. (1982). Till stratigraphy and late glacial events in the Lake Michigan Lobe of eastern Wisconsin. Geological Society of America Bulletin 93, 289296.Google Scholar
Alestalo, I. (1971). Dendrochronological interpretation of geomorphic processes. Societas geographica Fenniae 105, 140.Google Scholar
Baillie, M. G. L. (1982). Tree ring dating and archaeology. Croom Helm Studies in Archaeology, 274.Google Scholar
Bard, E. Arnold, M. Fairbanks, R. G., and Hamelin, B. (1993). 230Th-234U and ,4C ages obtained by mass spectrometry on corals. Radiocarbon 35(1), 191199.Google Scholar
Black, R. F. (1970). Glacial geology of Two Creeks forest bed, Valderan Type locality, and Northern Kettle Moraine State Forest. Wisconsin Geological and Natural History Survey Information Circular 13, 40.Google Scholar
Black, R. F. (1976). Quaternary geology and contiguous upper Michigan. In “Quaternary Stratigraphy of North America” (Mahaney, W. C., Ed.), pp. 93117. Dowden, Hutchinson, and Ross, Stoudsburg, PA.Google Scholar
Broecker, W. S., and Farrand, W. R. (1963). Radicarbon age of the Two Creeks forest bed, Wisconsin. Geological Society of America Bulletin 74, 795802.Google Scholar
Broecker, W. S. Andree, M. Wolfli, W. Oeschger, H. Bonani, G. Kennett, J., and Peteet, D. (1988). The chronology of the last deglaciation: Implications to the cause of the Younger Dryas event. Paleoceanography 3, 119.Google Scholar
Broecker, W. S. Kennett, J. Flower, B. Teller, J. Trumbore, S., Bonani, G., and Wolfli, W. (1989). Routing of the Me It water from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature 341, 318320.Google Scholar
Dansgaard, W. (1964). Isotopes in precipitation. Tellus 16, 436468.Google Scholar
Dreimanis, A., and Karrow, P. F. (1972). Glacial history of the Great Lakes-St. Lawrence region: The classification of the Wisconsin(an) Stage and its correlatives. In “24th International Geological Congress,” Report Section 12, pp. 515.Google Scholar
Eicher, U. (1979). “Die 18O/,60und 13C/12C-Isotopenverhaltnisse in spatglazialen Stisswasserkarbonaten und ihr Zusammenhang mit den Ergebnissen der Pollenanalyse.” Dissertation Universitat Bern, 205.Google Scholar
Eicher, U. (1980). Pollenund Sauerstoffisotopenanalysen an spatglazialen Profllen von Gerzensee, Faulenseemoos und vom Regenmoos ob Boltigen. Mitteilungen NG Bern 37, 6580.Google Scholar
Evenson, E. B. Farrand, W. R. Eschman, D. E. Mickelson, D. M., and Maher, L. J. (1976). Greatlakean substage: A replacement for Valderan substage in the Lake Michigan Basin. Quaternary Research 6, 411424.Google Scholar
Fairbanks, R. (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Frye, J. C. Willman, H. B., and Black, R. F. (1965). Outline of glacial geology of Illinois and Wisconsin. In “The Quaternary of the United States” (Wright, H. E. and Frey, D. G., Eds.), pp. 4361. Princeton University Press.Google Scholar
Goldthwait, J. W. (1907). The abandoned shorelines of eastern Wisconsin: Wisconsin Geological Survey Bulletin 17, 134.Google Scholar
Hansel, A. K., and Mickelson, D. M. (1988). A Reevaluation of Timing and Causes of High Lake Phases in the Lake Michigan Basin. Quaternary Research 29, 113129.Google Scholar
Kaiser, N. F. J. (1979). Ein spateiszeitlicher Wald im Dattnau bei Winterthur/Schweiz. Dissertation Universitat Zurich. Ziegler Druck & Verlags-AG, Winterthur, 90.Google Scholar
Kaiser, K. F. (1987). Dattnau (Switzerland) and Two Creeks buried forest (Wisconsin) as examples of the late-glacial reforestation in different glaciation areas of the northern hemisphere. “Proceedings of the International Symposium on Ecological Aspects of Tree-Ring Analysis,” Tarrytown, NYC, 1986, pp. 291297e.Google Scholar
Kaiser, K. F. (1989). Late glacial reforestation in the Swiss Mittelland, as illustrated by the Dattnau Valley. In “Quaternary Type sections: Imagination or reality?” (Rose, and Schluchter, , Eds), pp. 161178. Balkema, Rotterdam.Google Scholar
Kaiser, K. F. (1993a). Beitrage zur Klimageschichte vom spaten Hochglazial bis ins friihe Holozan rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Ziegler Druck & Verlags-AG, Winterthur und WSL/FNP, Birmensdorf, 203.Google Scholar
Kaiser, K. F. (1993b). Tree-rings as indicators of glacier advances, surges, and inundations. Dendrochronologia 11, 101122.Google Scholar
Leavitt, S. T., and Kalin, R. M. (1992). A new tree-ring width, 813C, 14C investigation of the Two Creeks Site. Radiocarbon 34, 792797.Google Scholar
Lehman, S. J., and Keigwin, L. D. (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757762.Google Scholar
Lineback, J. A. Gross, D. L., and Meyer, R. P. (1974). Glacial tills under Lake Michigan. Illinois Geological Survey, Environmental Geology Note 69, 48.Google Scholar
Mangerud, J. Andersen, S. T. Berglund, B. E., and Donner, J. J. (1974). Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3, 109128.Google Scholar
Me Cartney, M. C., and Mickelson, D. M. (1982). Late Woodfordian and Greatlakean history of the Green Bay Lobe, Wisconsin. Geological Society of America Bulletin 93, 297302.Google Scholar
Mickelson, D. M. Clayton, L. Fullerton, D. S., and Boms, H. W. Jr., (1983). The Late Wisconsin glacial record of the Laurentide Ice Sheet in the United States. In “Quaternary Environments of the United States. 1. The Late Pleistocene” (Porter, S. C., Ed.), pp. 337. Univ. of Minnesota Press, Minneapolis.Google Scholar
Samthein, M. Jansen, E. Arnold, M. Duplessy, J. C. Erlenkeuser, H. Flatoy, A. Hahn, M. Veum, T., and Vogelsang, E. (1992). 8,80 Time-slice reconstruction of meltwater anomalies at the termination I in the North Atlantic between 50° and 80°N. In “The Last Deglaciation Absolute and Radiocarbon Chronologies” (Bard, E. and Broecker, W. S., Eds.), pp. 183200. NATO ASI Series 12, Springer.Google Scholar
Siegenthaler, U. Eicher, U., and Oeschger, H. (1984). Lake sediments as continental 8lsO records from the Glacial/Post-Glacial transition. Annals of Glaciology 5, 149152.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended 14C Data Base CALIB 3.014C Age Calibration Program. Radiocarbon 35(1), 215230.Google Scholar
Suess, H, E. (1979). Were Aller0d and Two Creeks sub stages contemporaneous? In “Radiocarbon Dating” (Berger, R., and Suess, H. E., Eds.). Proceedings of the 9th International Conference, Los Angeles and La Jolla, 1976, pp. 7682. UC Press.Google Scholar
Teller, J. T. (1990). Volume and routing of Late Glacial runoff from the southern Laurentide Ice Sheet. Quaternary Research 34, 1223.CrossRefGoogle Scholar
Teller, J. T. (1992). The repetitive cycle of North American glacial runoff. Abstracts with Programs. Geological Society of America, 1992 Annual Meeting. A243A244.Google Scholar
Wilson, L. R. (1936). The Two Creeks forest bed, Manitowoc County, Wisconsin. Bulletin of the Torrey Club, 317325.Google Scholar
Wright, H. E. Jr., (1971). Retreat of the Laurentide ice sheet from to 9,000 years ago. Quaternary Research 1, 316330.Google Scholar