Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T01:42:17.412Z Has data issue: false hasContentIssue false

A multidisciplinary study of ecosystem evolution through early Pleistocene climate change from the marine Arda River section, Italy

Published online by Cambridge University Press:  06 March 2018

Gaia Crippa*
Affiliation:
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio,” via Mangiagalli 34, Milano, 20133, Italy
Andrea Baucon
Affiliation:
Università di Modena, Dipartimento di Chimica e Scienze Geologiche, Via Campi 103, Modena, 41125, Italy Geology and Palaeontology Office, Geopark Naturtejo da Meseta Meridional – UNESCO Global Geopark. Municipality of Idanha-a-Nova – Centro Cultural Raiano. Av. Joaquim Morão, Idanha-a-Nova, 6060-101, Portugal
Fabrizio Felletti
Affiliation:
Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio,” via Mangiagalli 34, Milano, 20133, Italy
Gianluca Raineri
Affiliation:
Parco Regionale dello Stirone e del Piacenziano, Loc. Scipione Ponte 1, Salsomaggiore Terme, 43039, Italy
Daniele Scarponi
Affiliation:
Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Zamboni 67, Bologna, 40126, Italy
*
*Corresponding author at: Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio,” via Mangiagalli 34, Milano, 20133, Italy. E-mail address: [email protected] (G.Crippa).

Abstract

The Arda River marine succession (Italy) is an excellent site to apply an integrated approach to paleoenvironmental reconstructions, combining the results of sedimentology, body fossil paleontology, and ichnology to unravel the sedimentary evolution of a complex marine setting in the frame of early Pleistocene climate change and tectonic activity. The succession represents a subaqueous extension of a fluvial system, originated during phases of advance of fan deltas affected by high-density flows triggered by river floods, and overlain by continental conglomerates, indicating a relative sea level fall and the establishment of a continental environment. An overall regressive trend is observed through the section, from prodelta to delta front and intertidal settings. The hydrodynamic energy and the sedimentation rate are not constant through the section, but they are influenced by hyperpycnal flows, whose sediments were mainly supplied by an increase in Apennine uplift and erosion, especially after 1.80 Ma. The Arda section documents the same evolutionary history of coeval successions in the Paleo-Adriatic region, as well as the climatic changes of the early Pleistocene. The different approaches used complement quite well one another, giving strength and robustness to the obtained results.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amorosi, A., Farina, M., Severi, P., Preti, D., Caporale, L., Di Dio, G., 1996. Genetically related alluvial deposits across active fault zones: an example of alluvial fan-terrace correlation from the upper Quaternary of the Southern Po Basin Italy. Sedimentary Geology 102, 275295.Google Scholar
Argnani, A., Barbacini, G., Bernini, M., Camurri, F., Ghielmi, M., Papani, G., Rizzini, F., Rogledi, S., Torelli, L., 2003. Gravity tectonics driven by Quaternary uplift in the Northern Apennines: insights from the La Spezia-Reggio Emilia geo-transect. Quaternary International 101–102, 1326.Google Scholar
Argnani, A., Bernini, M., Di Dio, G.M., Papani, G., Rogledi, S., 1997. Stratigraphic record of crustal-scale tectonics in the Quaternary of the Northern Apennines (Italy). Il Quaternario 10, 595602.Google Scholar
Artoni, A., Bernini, M., Papani, G., Rizzini, F., Barbacini, G., Rossi, M., Rogledi, S., Ghielmi, M., 2010. Mass-transport deposits in confined wedge-top basins: surficial processes shaping the messinian orogenic wedge of Northern Apennine of Italy. Italian journal of geosciences 129, 101118.Google Scholar
Bartolini, C., Caputo, R., Pieri, M., 1996. Pliocene–Quaternary sedimentation in the Northern Apennine Foredeep and related denudation. Geological Magazine 133, 255273.Google Scholar
Bates, C., 1953. Rational theory of delta formation. American Association of Petroleum Geologists Bulletin 37, 21192162.Google Scholar
Baucon, A., Bordy, E., Brustur, T., Buatois, L.A., De, C., Duffin, C., Felletti, F., et al., 2012. A History of Ideas in Ichnology. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64, Elsevier, Amsterdam, pp. 343.Google Scholar
Baucon, A., Ronchi, A., Felletti, F., Neto de Carvalho, C., 2014. Evolution of Crustaceans at the edge of the end-Permian crisis: ichnonetwork analysis of the fluvial succession of Nurra (Permian-Triassic, Sardinia, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 410, 74103.Google Scholar
Bertini, A., 2010. Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quaternary International 225, 524.Google Scholar
Bhattacharya, J.P., MacEachern, J.A., 2009. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous Seaway of North America. Journal of Sedimentary Research 79, 184209.Google Scholar
Bona, F., Sala, B., 2016. Villafranchian-Galerian mammal faunas transition in South- Western Europe. The case of the late early Pleistocene mammal fauna of the Frantoio locality, Arda River (Castell’Arquato, Piacenza, Northern Italy). Geobios 49, 329347.Google Scholar
Bottjer, D.J., Droser, M.L., 1991. Ichnofabric and basin analysis. Palaios 6, 199205.Google Scholar
Brenchley, P.J., Harper, D., 1998. Palaeoecology: Ecosystems, Environments, and Evolution. Chapman and Hall, London.Google Scholar
Brett, C.E., Baird, G.C., 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1, 207227.Google Scholar
Bromley, R.G., 1996. Trace fossils: Biology, Taphonomy and Applications. 2nd ed. Chapman and Hall, London.Google Scholar
Browne, G.H., Naish, T.R., 2003. Facies development and sequence architecture of a late Quaternary fluvial-marine transition, Canterbury Plains and shelf, New Zealand: implications for forced regressive deposits. Sedimentary Geology 158, 5786.Google Scholar
Bruno, L., Amorosi, A., Severi, P., Costagli, B., 2017. Late Quaternary aggradation rates and stratigraphic architecture of the southern Po Plain, Italy. Basin Research 29, 234248.Google Scholar
Buatois, L.A., Gingras, M.K., MacEachern, J., Mágano, G.M., Zonneveld, H.-P., Pemberton, S.G., Netto, R.G., Martin, A.J., 2005. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20, 321347.Google Scholar
Buatois, L.A., Mángano, M.G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge University Press, Cambridge and New York.Google Scholar
Calabrese, L., Di Dio, G., 2009. Note Illustrative della Carta Geologica d’Italia alla scala 1: 50.000, foglio 180 “Salsomaggiore Terme”. Servizio Geologico d’Italia-Regione Emilia Romagna, Roma.Google Scholar
Carminati, E., Doglioni, C., 2012. Alps vs. Apennines: the paradigm of a tectonically asymmetric Earth. Earth Science Reviews 112, 6796.Google Scholar
Carruba, S., Casnedi, R., Felletti, F., 2004. From seismic to bed: surface–subsurface correlations within the turbiditic Cellino Formation (central Italy). Petroleum Geoscience 10, 131140.Google Scholar
Cau, S., Roveri, M., Taviani, M., 2017). Anatomy of biocalcarenitic units in the Plio-Pleistocene record of the Northern Apennines (Italy). Geophysical Research Abstracts 19, EGU2017-19478.Google Scholar
Cau, S., Taviani, M., Manzi, V., Roveri, M., 2013. Paleoecological, bio-sedimentological and taphonomic analysis of Plio-Pleistocene biocalcarenite deposits from northern Apennines and Sicily (Italy). Journal of Mediterranean Earth Sciences Special Issue, 3537.Google Scholar
Ceregato, A., Raffi, S., Scarponi, D., 2007. The circalittoral/bathyal in the Middle Pliocene of Northern Italy: the case of the Korobkovia oblonga–Jupiteria concava paleocommunity type. Geobios 40, 555572.Google Scholar
Ciangherotti, A.D., Crispino, P., Esu, D., 1997. Paleoecology of the non-marine molluscs of the Pleistocene Stirone River sequence (Emilia, Northern Italy). Bollettino della Società Paleontologica Italiana 36, 303310.Google Scholar
Cigala Fulgosi, F., 1976. Dicerorhinus hemitoechus (Falconer) del post-Villafranchiano fluvio lacustre del T. Stirone (Salsomaggiore, Parma). Bollettino della Società Paleontologica Italiana 15, 5972.Google Scholar
Clifton, H.E., Thompson, J.K., 1978. Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. Journal of Sedimentary Petrology 48, 12931302.Google Scholar
Coelho, V.R., Rodrigues, S. de A., 2001. Trophic behaviour and functional morphology of the feeding appendages of the laomediid shrimp Axianassa australis (Crustacea: Decapoda: Thalassinidea). Journal of the Marine Biological Association of the United Kingdom 81, 441454.Google Scholar
Combourieu-Nebout, N., Bertini, A., Russo-Ermolli, E., Peyron, O., Klotz, S., Montade, V., Fauquette, S., et al., 2015. Climate changes in the central Mediterranean and Italian vegetation dynamics since the Pliocene. Review of Palaeobotany and Palynology 218, 127147.Google Scholar
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio, C., Hennissen, J.A.I., et al., 2016. Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: Implications for climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 234251.Google Scholar
Crippa, G., Raineri, G., 2015. The genera Glycymeris, Aequipecten and Arctica, and associated mollusk fauna of the Lower Pleistocene Arda River section (Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 121, 61101.Google Scholar
Crnčević, M., Balić, D.E., Pećarević, M., 2013. Reproductive cycle of Glycymeris nummaria (Linnaeus, 1758) (Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia. Scientia Marina 77, 293300.Google Scholar
de Gibert, J., Goldring, R., 2008. Spatangoid-produced ichnofabrics (Bateig Limestone, Miocene, Spain) and the preservation of spatangoid trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 299310.Google Scholar
Dodd, J.R., Stanton, R.J., 1990. Paleoecology: Concepts and Applications. 2nd ed. John Wiley and Sons, New York.Google Scholar
Dominici, S., 2001. Taphonomy and paleoecology of shallow marine macrofossil assemblages in a collisional setting (late Pliocene–early Pleistocene, western Emilia, Italy). Palaios 16, 336353.Google Scholar
Dominici, S., 2004. Quantitative Taphonomy in Sandstones from an Ancient Fan Delta System (Lower Pleistocene, Western Emilia, Italy). Palaios 19, 193205.Google Scholar
Felletti, F., Carruba, S., Casnedi, R., 2009. Sustained turbidity currents: evidence from the Pliocene Periadriatic foredeep (Cellino Basin, Central Italy). External Controls on Deep-Water Depositional Systems. Society for Sedimentary Geology Special Publication 92, 325346.Google Scholar
Frey, R.W., Howard, J.D., Pryor, W.A., 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 23, 199229.Google Scholar
Fu, S., Werner, F., 2000. Distribution, ecology and taphonomy of the organism trace, Scolicia, in northeast Atlantic deep-sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 289300.Google Scholar
Fürsich, F.T., 1978. The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia 11, 243250.Google Scholar
Fusco, F., 2010. Picea + Tsuga pollen record as a mirror of oxygen isotope signal? An insight into the Italian long pollen series from Pliocene to Early Pleistocene. Quaternary International 225, 5874.Google Scholar
Ghibaudo, G., 1992. Subaqueous sediment gravity flow deposits: practical criteria for their field description and classification. Sedimentology 39, 423454.Google Scholar
Gingras, M.K., MacEachern, J.A., Dashtgard, S.E., 2011. Process ichnology and the elucidation of physico-chemical stress. Sedimentary Geology 237, 115134.Google Scholar
Goldring, R., Cadée, G., D’Alessandro, A., de Gibert, J.M., Jenkins, R., Pollard, J.E., 2004. Climatic control of trace fossil distribution in the marine realm. In: McIlroy, D. (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications 228. Geological Society of London, London, pp. 7792.Google Scholar
Goldring, R., Cadée, G., Pollard, J.E., 2007. Climatic Control of Marine Trace Fossil Distribution. In: Miller W., III (Ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 159171.Google Scholar
Gregory, M.R., Campbell, K.A., Zuraida, R., Martin, A.J., 2006. Plant Traces Resembling. Skolithos. Ichnos 13, 205216.Google Scholar
Gunderson, K.L., Pazzaglia, F.J., Picotti, V., Anastasio, D.A., Kodama, K.P., Rittenour, T., Frankel, K.F., et al., 2014. Unraveling tectonic and climatic controls on synorogenic growth strata (Northern Apennines, Italy). Geological Society of America Bulletin 126, 532552.Google Scholar
Hauck, T.E., Dashtgard, S.E., Pemberton, S.G., Gingras, M.K., 2009. Brackish-water ichnological trends in a micro- tidal barrier island/embayment system, Kouchibouguac National Park, New Brunswick, Canada. Palaios 24, 478496.Google Scholar
Knaust, D., 2017. Atlas of Trace Fossils in Well Core. Springer, Cham, Switzerland.Google Scholar
Kowalewski, M., Wittmer, J.M., Dexter, T.A., Amorosi, A., Scarponi, D., 2015. Differential response of marine communities to natural and anthropogenic changes. Proceedings of the Royal Society B 282. http://dx.doi.org/10.1098/rspb.2014.2990.Google Scholar
Książkiewicz, M., 1954. Uwarstwienie frakcjonalne i laminowane we fliszu karpackim (Graded and laminated bedding in the Carpathian Flysch). [In Polish with English summary]. Rocznik Polskiego Towarzystwa Geologicznego 22, 399471.Google Scholar
Leaman, M., Mcilroy, D., Herringshaw, L.G., Boyd, C., Callow, R.H.T., 2015. What does Ophiomorpha irregulaire really look like? Palaeogeography, Palaeoclimatology, Palaeoecology 439, 3849.Google Scholar
Lobza, V., Schieber, J., 1999. Biogenic sedimentary structures produced by worms in soupy, soft muds: observations from the Chattanooga Shale (Upper Devonian) and experiments. Journal of Sedimentary Research 69, 10411049.Google Scholar
Löwemark, L., Lin, Y., Chen, H.-F., Yang, T.-N., Beier, C., Werner, F., Lee, C.-Y., Song, S.-R., Kao, S.-J., 2006. Sapropel burn-down and ichnological response to late Quaternary sapropel formation in two ∼400 ky records from the eastern Mediterranean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 406425.CrossRefGoogle Scholar
Lozano Francisco, M.C., Vera Pelaez, J.L., Guerra Merchan, A., 1993. Arcoida (Mollusca, bivalvia) del Plioceno de la provincia de Málaga, España. Treballs del Museu de Geologia de Barcelona 3, 157188.Google Scholar
MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S., Pemberton, S.G., 2012. The Ichnofacies Paradigm. In: Knaust, D., Bromley, R.G. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology 64, 563603.Google Scholar
MacEachern, J.A., Pemberton, S.G., Gingras, M.K., Bann, K.L., 2007. The ichnofacies concept: a fifty-year retrospective. In: Miller W., III. (Ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 5075.Google Scholar
Malatesta, A., 1974. Malacofauna pliocenica umbra. Memoria per servire alla descrizione della Carta Geologica d’Italia 13, 1490.Google Scholar
Mancini, M., Moscatelli, M., Stigliano, F., Cavinato, G.P., Marini, M., Pagliaroli, A., Simionato, M., 2013. Fluvial facies and stratigraphic architecture of Middle Pleistocene incised valleys from the subsoil of Rome (Italy). Journal of Mediterranean Earth Sciences Special Issue, 89–93.Google Scholar
Marini, M., Milli, S., Rossi, M., De Tomasi, V., Meda, M., Lisi, N., 2013. Multi-scale characterization of the Pleistocene-Holocene Tiber delta deposits as a depositional analogue for hydrocarbon reservoirs. Journal of Mediterranean Earth Sciences Special Issue, 103–109.Google Scholar
Martinelli, J.C., Soto, L.P., González, J., Rivadeneira, M.M., 2017. Benthic communities under anthropogenic pressure show resilience across the quaternary. Royal Society Open Science 4, 170796. DOI:10.1098/rsos.170796.Google Scholar
Martínez-García, B., Rodríguez-Lázaro, J., Pascual, A., Mendicoa, J., 2015. The “northern guests” and other palaeoclimatic ostracod proxies in the late quaternary of the Basque basin (S bay of Biscay). Palaeogeography, Palaeoclimatology, Palaeoecology 419, 100114.Google Scholar
Massari, F., Chiocci, F, 2006. Biocalcarenite and mixed cool-water prograding bodies of the Mediterranean Pliocene and Pleistocene: architecture, depositional setting and forcing factors. Geological Society of London Special Publications 255.1, 95120.Google Scholar
McIlroy, D., 2004. The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London Special Publications 228, 12.Google Scholar
McIlroy, D., 2008. Ichnological analysis: The common ground between ichnofacies workers and ichnofabric analysts. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 332338.CrossRefGoogle Scholar
Milli, S., Mancini, M., Moscatelli, M., Stigliano, F., Marini, M., Cavinato, G.P., 2016. From river to shelf, anatomy of a high‐frequency depositional sequence: the Late Pleistocene to Holocene Tiber depositional sequence. Sedimentology 63, 18861928.Google Scholar
Monegatti, P., Raffi, S., Roveri, M., Taviani, M., 2001. One day trip in the outcrops of Castell’Arquato Plio–Pleistocene Basin: from the Badlands of Monte Giogo to the Stirone River. Paleobiogeography and Paleoecology 2001 International Conference, Excursion Guidebook, Università di Parma, Parma, Italy, pp. 26.Google Scholar
Monesi, E., Muttoni, G., Scardia, G., Felletti, F., Bona, F., Sala, B., Tremolada, F., Francou, C., Raineri, G., 2016. Insights on the opening of the Galerian mammal migration pathway from magnetostratigraphy of the Pleistocene marine–continental transition in the Arda River section (northern Italy). Quaternary Research 86, 220231.Google Scholar
Mulder, T., Syvitski, J.P.M., Migeon, S., Faugéres, J.C., Savoye, B., 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology 20, 861882.Google Scholar
Mutti, E., Davoli, G., Tinterri, R., Zavala, C., 1996. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie di Scienze Geologiche 84, 233291.Google Scholar
Mutti, E., Tinterri, R., Benevelli, G., Di Biase, D., Cavanna, G., 2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology 20, 733755.Google Scholar
Mutti, E., Tinterri, R., Di Biase, D., Fava, L., Mavilla, N., Angella, S., Calabrese, L., 2000. Delta-front facies associations of ancient flood-dominated fluvio-deltaic systems. Revista Società Geologica de España 13, 165190.Google Scholar
Nichols, G., 2009. Sedimentology and Stratigraphy. 2nd ed. Wiley-Balckwell, Chichester.Google Scholar
Ori, G.G., Roveri, M., Vannoni, F., 1986. Plio-Pleistocene sedimentation in the Apenninic-Adriatic foredeep (Central Adriatic Sea, Italy). International Association of Sedimentologists Special Publication 8, 183198.Google Scholar
Papani, G., Pelosio, G., 1962. (1963). La serie plio-pleistocenica del Torrente Stirone (Parmense Occidentale). Bollettino della Società Geologica Italiana 81, 293325.Google Scholar
Pearson, N.J., Gabriela Mángano, M., Buatois, L.A., Casadío, S., Raising, M.R., 2013. Environmental variability of Macaronichnus ichnofabrics in Eocene tidal-embayment deposits of southern Patagonia, Argentina. Lethaia 46, 341354.Google Scholar
Pelosio, G., Raffi, S., 1977. Preliminary remarks on mollusc assemblages of the Stirone river Pleistocene series (Parma Province, Northern Italy). In: Bowen, D.Q. (Ed.), X INQUA Congress Excursion Guides Vol. X. International Union for Quaternary Research, Birmingham, England, pp. 119.Google Scholar
Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D., Sinclair, I.K., 2001. Ichnology and Sedimentology of Shallow to Marginal Marine Systems. Geological Association of Canada, Short Course Notes, Vol. 15. AGMV Marquis, St. John’s.Google Scholar
Pérès, J.M., Picard, J., 1964. Nouveau manuel de bionomie bentique de la Méditerranée. Recueil des Travaux de la Station Marine d’Endoume 31, 1137.Google Scholar
Pieri, M., 1983. Three seismic profiles through the Po Plain. In: Bally, A.W. (Ed.), Seismic Expression of Structural Styles. American Association of Petroleum Geologists, Studies in Geology Series 15. The American Association of Petroleum Geologists, Tulsa, Oklahoma, pp. 3.4.1/83.4.1/26.Google Scholar
Quiroz, L.I., Buatois, L.A., Mangano, M.G., Jaramillo, C.A., Santiago, N., 2010. Is the trace fossil Macaronichnus an indicator of temperate to cold waters? Exploring the paradox of its occurrence in tropical coasts. Geology 38, 651654.Google Scholar
Raffi, S., 1986. The significance of marine boreal molluscs in the Early Pleistocene faunas of the Mediterranean area. Palaeogeography, Palaeoclimatology, Palaeoecology 52, 267289.Google Scholar
Raineri, G., 2007. Riserva Naturale Geologica del Piacenziano: Appunti per un’Escursione. Parchi e Riserve dell’Emilia-Romagna, Rome, Italy.Google Scholar
Ricci Lucchi, F., 1986. Oligocene to Recent foreland basins of northern Apennines. In: Allen, P.H., Homewood, P. (Eds.), Foreland Basins. International Association of Sedimentologists, Special Publication No. 8, International Association of Sedimentologists, CITY, pp. 105139.Google Scholar
Roveri, M., Taviani, M., 2003. Calcarenite and sapropel deposition in the Mediterranean Pliocene: shallow‐and deep‐water record of astronomically driven climatic events. Terra Nova 15, 279286.Google Scholar
Roveri, M., Visentin, C., Argnani, A., Knezaurek, G., Lottaroli, F., Rossi, M., Taviani, M., Trincardi, F., Vigliotti, L., 1998. The Castell’Arquato Basin: high-resolution sequence stratigraphy and stratal patterns of an uplifting margin in the Apennines foothills (Italy). In: M. Field, S. Berné, A. Colella, C. Nittrouer, F. Trincardi (Eds.), SEPM–IAS Research Conference (September 15–19, 1998): Strata and Sequences on Shelves and Slopes, Abstract Volume. SEPM-IAS, Sicily.Google Scholar
Savrda, C., Uddin, A., 2005. Large Macaronichnus and Their Behavioral Implications (Cretaceous Eutaw Formation, Alabama, USA). Ichnos 12, 19.Google Scholar
Scarponi, D., Huntley, J.W., Capraro, L., Raffi, S., 2014. Stratigraphic paleoecology of the Valle di Manche section (Crotone Basin, Italy): a candidate GSSP of the Middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 402, 3043.Google Scholar
Scarponi, D., Azzarone, M., Kowalewski, M., Huntley, J.W., 2017a. Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic. Nature Scientific Reports 7, 5732. http://dx.doi.org/10.1038/s41598-017-05979-6.Google Scholar
Scarponi, D., Kusnerik, K., Azzarone, M., Amorosi, A., Bohacs, K., Drexler, T.M., Kowalewski, M., 2017b. Systematic vertical and lateral changes in quality and time resolution of the macrofossil record: insights from Holocene transgressive deposits, Po coastal plain, Italy. Marine and Petroleum Geology 87, 128136.Google Scholar
Schäfer, W., 1956. Wirkungen der Benthos Organismen auf den jungen Schichtverband. Senckenbergiana Lethaea 37, 183263.Google Scholar
Seike, K., Yanagishima, S.I., Nara, M., Sasaki, T., 2011. Large Macaronichnus in modern shoreface sediments: identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 224–229.Google Scholar
Seilacher, A., 1962. Paleontological studies on turbidite sedimentation and erosion. The Journal of Geology 70, 227234.Google Scholar
Suess, E., 1883–1888. Das Antlitz der Erde. F. Tempsky (Prague, Czech Republic; Vienna, Austria) and G. Freytag (Leipzig, Germany).Google Scholar
Taviani, M., Roveri, M., Impiccini, R., Vigliotti, L., 1997. Segnalazione di Quaternario marino nella Val Chero (Appennino Piacentino). Bollettino della Società Paleontologica Italiana 36, 331338.Google Scholar
Taylor, A., Goldring, R., Gowland, S., 2003. Analysis and application of ichnofabrics. Earth-Science Reviews 60, 227259.Google Scholar
Taylor, P.D., Wilson, M.A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62, 1103.Google Scholar
Tedesco, L.P., Wanless, H.R., 1991. generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks, Holocene of South Florida and Caicos Platform, B.W.I. Palaios, 326343.Google Scholar
Tinterri, R., 2007. The Lower Eocene Roda Sandstone (South-Central Pyrenees): an example of a flood-dominated river-delta system in a tectonically controlled basin. Rivista Italiana di Paleontologia e Stratigrafia 113, 223255.Google Scholar
Tyson, R., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society of London Special Publications 58, 124.Google Scholar
Uchman, A., Wetzel, A., 2011. Deep-sea ichnology: the relationships between depositional environment and endobenthic organisms. In: Huneke, H., Mulder, T. (Eds.), Deep-Sea Sediments. Developments in Sedimentology 63, Elsevier, Amsterdam, pp. 517556.Google Scholar
von Leesen, G., Beierlein, L., Scarponi, D., Schöne, B.R., Brey, T., 2017. A low seasonality scenario in the Mediterranean Sea during the Calabrian (Early Pleistocene) inferred from fossil Arctica islandica shells. Palaeogeography, Palaeoclimatology, Palaeoecology 485, 706714.Google Scholar
Weltje, G., de Boer, P.L., 1993. Astronomically induced paleoclimatic oscillations reflected in Pliocene turbidite deposits on Corfu (Greece): implications for the interpretation of higher order cyclicity in ancient turbidite systems. Geology 21, 307310.Google Scholar
Wetzel, A., 2010. Deep-sea ichnology: Observations in modern sediments to interpret fossil counterparts. Acta Geologica Polonica 60, 125138.Google Scholar
Wetzel, A., Tjallingii, R., Wiesner, M.G., 2011. Bioturbational structures record environmental changes in the upwelling area off Vietnam (South China Sea) for the last 150,000years. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 256267.Google Scholar
Wetzel, A., Uchman, A., 1998. Deep-sea benthic food content recorded by ichnofabrics: a conceptual model based on observations from Paleogene Flysch, Carpathians, Poland. Palaios 13, 533546.Google Scholar
Williams, A., Brunton, C.H.C., Carlson, S.J., Alvarez, F., Ansell, A.D., Baker, P.G., Bassett, M.G., et al., 2000. Linguliformea, Craniiformea and Rhynconelliformea (part). In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H, Brachiopoda, Revised. The Geological Society of America and The University of Kansas, Boulder, Colorado and Lawrence, Kansas, Vol. 2, pp. 423; Vol. 33 pp. 424919.Google Scholar
Williams, A., Brunton, C.H.C., Carlson, S.J., Alvarez, F., Ansell, A.D., Baker, P.G., Bassett, M.G., et al., 2006. Rhynconelliformea (part). In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part H, Brachiopoda, Revised. The Geological Society of America and The University of Kansas, Boulder, Colorado and Lawrence, Kansas, Vol. 5, pp. 16892320.Google Scholar
Wittmer, J.M., Dexter, T.A., Scarponi, D., Amorosi, A., Kowalewski, M., 2014. Quantitative bathymetric models for late Quaternary transgressive-regressive cycles of the Po Plain, Italy. The Journal of Geology 122, 649670.Google Scholar
Wysocka, A., Radwański, A., Górka, M., Bąbel, M., Radwańska, U., Złotnik, M., 2016. The Middle Miocene of the Fore-Carpathian Basin (Poland, Ukraine and Moldova). Acta Geologica Polonica 66, 351401.Google Scholar
Zavala, C., Arcuri, M., 2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology 337, 3654.Google Scholar
Zavala, C., Arcuri, M., Di Meglio, M., Gamero Diaz, H., Contreras, C., 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. In: Slatt, R.M., Zavala, C. (Eds.), Sediment Transfer from Shelf to Deep Water: Revisiting the Delivery System. American Association of Petroleum Geologists Studies in Geology 61, 3135.Google Scholar
Zavala, C., Ponce, J., Drittanti, D., Arcuri, M., Freije, H., Asensio, M., 2006. Ancient lacustrine hyperpycnites: a depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina. Journal of Sedimentary Research 76, 4159.Google Scholar
Supplementary material: File

Crippa et al. supplementary material

Crippa et al. supplementary material 1

Download Crippa et al. supplementary material(File)
File 613.2 KB