Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:46:53.977Z Has data issue: false hasContentIssue false

Late Quaternary sea-level changes of the Persian Gulf

Published online by Cambridge University Press:  20 January 2017

Stephen W. Lokier*
Affiliation:
Petroleum Geosciences Department, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Mark D. Bateman
Affiliation:
Department of Geography, Winter St., University of Sheffield, Sheffield S10 2TN, UK
Nigel R. Larkin
Affiliation:
Cambridge University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, UK
Philip Rye
Affiliation:
Granary Court Cottage, Granary Court Road, Smeeth, Ashford, Kent TN25 6RE, UK
John R. Stewart
Affiliation:
School of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
*
*Corresponding author.E-mail addresses:[email protected] (S.W. Lokier), [email protected] (M.D. Bateman), [email protected] (N.R. Larkin), [email protected] (P. Rye), [email protected] (J.R. Stewart).

Abstract

Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously variously dated between 6 and 3.4 ka. Examination of the stratigraphic and paleoenvironmental context of a mid-Holocene whale beaching allows us to accurately constrain the timing of the transgressive, highstand and regressive phases of the mid- to late Holocene sea-level highstand in the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today's sea level by 7100–6890 cal yr BP, attaining a highstand of > 1 m above current sea level shortly after 5290–4570 cal yr BP before falling back to current levels by 1440–1170 cal yr BP. The cetacean beached into an intertidal hardground pond during the transgressive phase (5300–4960 cal yr BP) with continued transgression interring the skeleton in shallow-subtidal sediments. Subsequent relative sea-level fall produced a forced regression with consequent progradation of the coastal system. These new ages refine previously reported timings for the mid- to late Holocene sea-level highstand published for other regions. By so doing, they allow us to constrain the timing of this correlatable global eustatic event more accurately.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, R.J. Lessa, G.C. Souza, M.C.d. (2006). A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25, 486506.Google Scholar
Baker, R.G.V. Haworth, R.J. (2000). Smooth or oscillating late Holocene sea-level curve? Evidence from the palaeo-zoology of fixed biological indicators in east Australia and beyond. Marine Geology 163, 367386.Google Scholar
Baker, R.G.V. Haworth, R.J. Flood, P.G. (2001). Inter-tidal fixed indicators of former Holocene sea levels in Australia: a summary of sites and a review of methods and models. Quaternary International 83–85, 257273.Google Scholar
Banerjee, D. Murray, A.S. Bøtter-Jensen, L. Lang, A. (2001). Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33, 7394.Google Scholar
Bateman, M.D. Boulter, C.H. Carr, A.S. Frederick, C.D. Peter, D. Wilder, M. (2007). Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence. Quaternary Geochronology 2, 5764.CrossRefGoogle Scholar
Beaman, R. Larcombe, P. Carter, R.M. (1994). New evidence for the Holocene sea-level high from the inner shelf, central Great Barrier Reef, Australia. Journal of Sedimentary Research 64, 881885.Google Scholar
Bosch, D.T. Dance, S.P. Moolenbeek, R.G. Oliver, P.G. (1995). Seashells of Eastern Arabia. Motivate Publishing, Dubai.Google Scholar
Boss, S.K. Rasmussen, K.A. (1995). Misuse of Fischer plots as sea-level curves. Geology 23, 221224.Google Scholar
Bottomley, N. (1996). Recent climate of Abu Dhabi. Osborne, P.E. Desert Ecology of Abu Dhabi. A Review and Recent Studies. Pisces, Newbury. 3649.Google Scholar
Bourrouilh-Le Jan, F.G. (2007). Very high energy sedimentation (supratidal hurricane deposits) and mid-Holocene highstand on carbonate platforms, Andros, Bahamas: an alternative view. Sedimentary Geology 199, 2949.CrossRefGoogle Scholar
Brain, M.J. Long, A.J. Woodroffe, S.A. Petley, D.N. Milledge, D.G. Parnell, A.C. (2012). Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth and Planetary Science Letters 345–348, 180193.CrossRefGoogle Scholar
Cazenave, A. Nerem, R.S. (2004). Present-day sea level change: observations and causes. Reviews of Geophysics 42, RG3001 Google Scholar
Chappell, J. Polach, H. (1991). Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. Nature 349, 147149.Google Scholar
Clark, P.U. Dyke, A.S. Shakun, J.D. Carlson, A.E. Clark, J. Wohlfarth, B. Mitrovica, J.X. Hostetler, S.W. McCabe, A.M. (2009). The Last Glacial Maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Collins, L.B. Zhao, J.-X. Freeman, H. (2006). A high-precision record of mid–late Holocene sea-level events from emergent coral pavements in the Houtman Abrolhos Islands, southwest Australia. Quaternary International 145–146, 7885.Google Scholar
Compton, J.S. (2001). Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa. The Holocene 11, 395405.CrossRefGoogle Scholar
Eberli, G.P. (2013). The uncertainties involved in extracting amplitude and frequency of orbitally driven sea-level fluctuations from shallow-water carbonate cycles. Sedimentology 60, 6484.Google Scholar
Evans, G. Schmidt, V. Bush, P. Nelson, H. (1969). Stratigraphy and geologic history of the sabkha, Abu Dhabi, Persian Gulf. Sedimentology 12, 145159.Google Scholar
Evans, G. Murray, J.W. Biggs, H.E.J. Bate, R. Bush, P.R. (1973). The oceanography, ecology, sedimentology and geomorphology of parts of the Trucial Coast barrier island complex, Persian Gulf. Purser, B.H. The Persian Gulf — Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer-Verlag, Berlin. 233277.Google Scholar
Fischer, A.G. (1964). The Lofer cyclothems of the Alpine Triassic. Kansas Geological Survey, Bulletin 169, 107149.Google Scholar
Fleming, K. Johnston, P. Zwartz, D. Yokoyama, Y. Lambeck, K. Chappell, J. (1998). Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327342.Google Scholar
Flood, P.G. Frankel, E. (1989). Late Holocene higher sea level indicators from eastern Australia. Marine Geology 90, 193195.CrossRefGoogle Scholar
Galbraith, R.F. Green, P.F. (1990). Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17, 197206.CrossRefGoogle Scholar
Gayes, P.T. Scott, D.B. Collins, E.S. Nelson, D.D. (1992). A Late Holocene sea-level fluctuation in South Carolina. Fletcher, C.H. III, and Wehmiller, J.F. Quaternary Coasts of the United States: Marine and Lacustrine Systems. SEPM, 155160.Google Scholar
Geyh, M.A. Streif, H. Kudrass, H.R. (1979). Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca. Nature 278, 441443.Google Scholar
Goodwin, D.H. Schone, B.R. Dettman, D.L. (2003). Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. PALAIOS 18, 110125.2.0.CO;2>CrossRefGoogle Scholar
Grossman, E.E. Fletcher Iii, C.H. Richmond, B.M. (1998). The Holocene sea-level highstand in the equatorial Pacific: analysis of the insular paleosea-level database. Coral Reefs 17, 309327.Google Scholar
Hanebuth, T.J.J. Stattegger, K. Bojanowski, A. (2009). Termination of the Last Glacial Maximum sea-level lowstand: the Sunda-Shelf data revisited. Global and Planetary Change 66, 7684.Google Scholar
Horton, B.P. Gibbard, P.L. Mine, G.M. Morley, R.J. Purintavaragul, C. Stargardt, J.M. (2005). Holocene sea levels and palaeoenvironments, Malay–Thai Peninsula, southeast Asia. The Holocene 15, 11991213.Google Scholar
Hughen, K.A. Baillie, M.G.L. Bard, E. Bayliss, A. Beck, J.W. Bertrand, C.J.H. Blackwell, P.G. Buck, C.E. Burr, G.S. Cutler, K.B. Damon, P.E. Edwards, R.L. Fairbanks, R.G. Friedrich, M. Guilderson, T.P. Kromer, B. McCormac, F.G. Manning, S.W. Bronk Ramsey, C. Reimer, P.J. Reimer, R.W. Remmele, S. Southon, J.R. Stuiver, M. Talamo, S. Taylor, F.W. van der Plicht, J. Weyhenmeyer, C.E. (2004). Marine04 marine radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, 10591086.Google Scholar
Kench, P.S. Smithers, S.G. McLean, R.F. Nichol, S.L. (2009). Holocene reef growth in the Maldives: evidence of a mid-Holocene sea-level highstand in the central Indian Ocean. Geology 37, 455458.Google Scholar
Kenig, F. (1991). Sédimentation, distribution et diagenèse de la matière organique dans un environment carbonaté hypersalin: le système lagune-sabkha d'Abu Dhabi. Institut Français du Pétrole. Université d'Orléans, France. 328 Google Scholar
Kenig, F. Huc, A.Y. Purser, B.H. Oudin, J.L. (1990). Sedimentation, distribution and diagenesis of organic-matter in a recent carbonate environment, Abu-Dhabi, UAE. Organic Geochemistry 16, 735747.Google Scholar
Kinsman, D.J.J. (1964). Reef coral tolerance of high temperature and salinites. Nature 12801282.Google Scholar
Kinsman, D.J.J. Park, R.K. (1976). Algal belt and coastal sabkha evolution, Trucial Coast, Persian Gulf. Walter, M.H. Stromatolites. Elsevier, 421433.Google Scholar
Kirkham, A. (1998). A Quaternary proximal foreland ramp and its continental fringe, Arabian Gulf, UAE. Wright, V.P., and Burchette, T.P. Carbonate Ramps. Geological Society, London. 1541.Google Scholar
Lambeck, K. (1996). Shoreline reconstructions for the Persian Gulf since the Last Glacial Maximum. Earth and Planetary Science Letters 142, 4357.Google Scholar
Leuliette, E. Nerem, R. Mitchum, G. (2004). Calibration of TOPEX/Poseidon and Jason Altimeter Data to construct a continuous record of mean sea level change. Marine Geodesy 27, 7994.CrossRefGoogle Scholar
Lian, O.B. Hu, J. Huntley, D.J. Hicock, S.R. (1995). Optical dating studies of Quaternary organic-rich sediments from southwestern British Columbia and northwestern Washington State. Canadian Journal of Earth Sciences 32, 11941207.Google Scholar
Lokier, S.W. (2012). Development and evolution of subaerial halite crust morphologies in a coastal sabkha setting. Journal of Arid Environments 79, 3247.Google Scholar
Lokier, S. Steuber, T. (2008). Quantification of carbonate-ramp sedimentation and progradation rates for the late Holocene Abu Dhabi shoreline. Journal of Sedimentary Research 78, 423431.Google Scholar
Lokier, S. Steuber, T. (2009). Large-scale intertidal polygonal features of the Abu Dhabi coastline. Sedimentology 56, 609621.Google Scholar
Lokier, S.W. Knaf, A. Kimiagar, S. (2013). A quantitative analysis of recent arid coastal sedimentary facies from the Arabian Gulf Coastline of Abu Dhabi, United Arab Emirates. Marine Geology 346, 141152.Google Scholar
Milne, G.A. Gehrels, W.R. Hughes, C.W. Tamisiea, M.E. (2009). Identifying the causes of sea-level change. Nature Geoscience 2, 471478.Google Scholar
Mohamed, K.A. (2008). Long-term tidal water level measurements in Abu Dhabi Emirate. ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. ASME, Estoril, Portugal. 937944.Google Scholar
Murray, A.S. Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Murray-Wallace, C.V. (2007). Eustatic sea-level changes since the last glaciation. Ellias, S.A. Encyclopedia of Quaternary Science. Elsevier, Amsterdam. 30343043.Google Scholar
Nunn, P.D. Peltier, W.R. (2001). Far-field test of the ICE-4G model of global isostatic response to deglaciation using empirical and theoretical Holocene sea-level reconstructions for the Fiji Islands, Southwestern Pacific. Quaternary Research 55, 203214.Google Scholar
Patterson, R.J. Kinsman, D.J.J. (1977). Marine and continental groundwater sources in a Persian Gulf coastal sabkha, reefs and related carbonates — ecology and sedimentology. AAPG 381397.Google Scholar
Peltier, W.R. Fairbanks, R.G. (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.Google Scholar
Prescott, J.R. Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.Google Scholar
Purser, B.H. Evans, G. (1973). Regional sedimentation along the Trucial Coast, SE Persian Gulf. Purser, B.H. The Persian Gulf — Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer-Verlag, Berlin. 211231.Google Scholar
Raafat, H. (2007). Climate. Kumar, A. Physical Geography Sector Paper. Environment Agency, Abu Dhabi. 7289.Google Scholar
Ramsay, P.J. (1996). 9000 years of sea-level change along the southern African coastline. Quaternary International 31, 7175.Google Scholar
Ranasinghe, P.N. Ortiz, J.D. Moore, A.L. McAdoo, B. Wells, N. Siriwardana, C.H.E.R. Wijesundara, D.T.D.S. (2013). Mid–Late Holocene coastal environmental changes in southeastern Sri Lanka: new evidence for sea level variations in southern Bay of Bengal. Quaternary International 298, 2036.Google Scholar
Sarnthein, M. (1972). Sediments and history of the postglacial transgression in the Persian Gulf and northwest Gulf of Oman. Marine Geology 12, 245266.Google Scholar
Scoffin, T.P. Le Tissier, M.D.A. (1998). Late Holocene sea level and reef flat progradation, Phuket, South Thailand. Coral Reefs 17, 273276.Google Scholar
Shinn, E.A. (1969). Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12, 109144.Google Scholar
Stattegger, K. Tjallingii, R. Saito, Y. Michelli, M. Trung Thanh, N. Wetzel, A. (2013). Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits. Global and Planetary Change 110, Part B 214222.Google Scholar
Stevens, T. Jestico, M.J. Evans, G. Kirkham, A. (2014). Eustatic control of late Quaternary sea-level change in the Arabian/Persian Gulf. Quaternary Research 82, 175184.CrossRefGoogle Scholar
Stewart, J.R. Aspinall, S. Beech, M. Fenberg, P. Hellyer, P. Larkin, N. Lokier, S.W. Marx, F.G. Meyer, M. Miller, R. Rainbow, P.S. Taylor, J.D. Whittaker, J.E. Al-Mehsin, K. Strohmenger, C.J. (2011). Biotically constrained palaeoenvironmental conditions of a mid-Holocene intertidal lagoon on the southern shore of the Arabian Gulf: evidence associated with a whale skeleton at Musaffah, Abu Dhabi, UAE. Quaternary Science Reviews 30, 36753690.Google Scholar
Strohmenger, C.J. Al-Mansoori, A. Al-Jeelani, O. Al-Shamry, A. Al-Hosani, I. Al-Mehsin, K. Shebl, H. (2010). The sabkha sequence at Mussafah Channel (Abu Dhabi, United Arab Emirates): facies stacking patterns, microbial-mediated dolomite and evaporite overprint. GeoArabia 15, 4990.CrossRefGoogle Scholar
Stuiver, M. Polach, H.A. (1977). Discussion reporting of 14C data. Radiocarbon 19, 355363.CrossRefGoogle Scholar
Stuiver, M. Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, Google Scholar
Taylor, S.R. McClennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.Google Scholar
Tjia, H.D. (1996). Sea-level changes in the tectonically stable Malay–Thai Peninsula. Quaternary International 31, 95101.Google Scholar
Uchupi, E. Swift, S.A. Ross, D.A. (1996). Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf. Marine Geology 129, 237269.Google Scholar
van Soelen, E.E. Lammertsma, E.I. Cremer, H. Donders, T.H. Sangiorgi, F. Brooks, G.R. Larson, R.A. Sinninghe Damsté, J.S. Wagner-Cremer, F. Reichart, G.J. (2010). Late Holocene sea-level rise in Tampa Bay: integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and diatoms. Estuarine, Coastal and Shelf Science 86, 216224.Google Scholar
Walker, M. (2005). Quaternary Dating Methods. John Wiley & Sons, Ltd., Google Scholar
Warren, J.K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. Pringer, Google Scholar
Wilkinson, B.H. Drummond, C.N. Rothman, E.D. Diedrich, N.W. (1997). Stratal order in peritidal carbonate sequences. Journal of Sedimentary Research 67, 10681082.Google Scholar
Williams, A.H. Walkden, G.M. (2002). Late Quaternary highstand deposits of the southern Arabian Gulf: a record of sea-level and climate change. Clift, P.D., Kroon, D., Gaedicke, C., and Craig, J. The Tectonic and Climatic Evolution of the Arabian Sea Region. Geological Society of London, London. 371386.Google Scholar
Wilson, P. Vincent, P.J. Telfer, M.W. Lord, T.C. (2008). Optically stimulated luminescence (OSL) dating of loessic sediments and cemented scree in northwest England. The Holocene 18, 11011112.Google Scholar
Wood, W.W. Bailey, R.M. Hampton, B.A. Kraemer, T.F. Lu, Z. Clark, D.W. James, R.H.R. Al Ramadan, K. (2012). Rapid late Pleistocene/Holocene uplift and coastal evolution of the southern Arabian (Persian) Gulf. Quaternary Research 77, 215220.Google Scholar
Woodroffe, S.A. Horton, B.P. (2005). Holocene sea-level changes in the Indo-Pacific. Journal of Asian Earth Sciences 25, 2943.Google Scholar
Woodroffe, C. McLean, R. (1990). Microatolls and recent sea level change on coral atolls. Nature 344, 531534.Google Scholar
Yim, W.W.S. Huang, G. (2002). Middle Holocene higher sea-level indicators from the South China coast. Marine Geology 182, 225230.Google Scholar
Yokoyama, Y. Lambeck, K. De Deckker, P. Johnston, P. Fifield, L.K. (2000). Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713716.CrossRefGoogle ScholarPubMed