Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T07:23:36.343Z Has data issue: false hasContentIssue false

Constraints on Paleoclimate from 11.5 to 5.0 ka from Shoreline dating and Hydrologic Budget Modeling of Baqan Tso, Southwestern Tibetan Plateau

Published online by Cambridge University Press:  20 January 2017

Tyler Huth*
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
Adam M. Hudson
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Jay Quade
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
Lei Guoliang
Affiliation:
College of Geographical Sciences, Fujian Normal University, Fujian 350007, China
Zhang Hucai
Affiliation:
College of Tourism and Geography, Yunnan Normal University, Kunming 650500, China
*
*Corresponding author. E-mail address:[email protected] (T. Huth).

Abstract

14C dating of shoreline deposits of closed-basin lake Baqan Tso in the western Tibetan Plateau shows that lake level regressed from the undated highstand (46 m above modern, 4.3 × modern surface area) of likely earliest Holocene age by 11.5 ka, and remained larger than modern until at least ≈ 5.0 ka. The shoreline record broadly matches other regional climate records, with lake level closely following Northern Hemisphere summer insolation overprinted by sub-millennial lake-level oscillations. A model coupling modern land runoff and lake surface heat closely reproduces estimated modern precipitation of ≈ 240 mm/yr. We estimate that the Baqan Tso basin required ≈ 380 mm/yr precipitation to sustain the maximum early Holocene lake area, a 55% increase over modern. Precipitation increases, not glacial meltwater, drove lake-level changes, as Baqan Tso basin was not glaciated during the Holocene. Our estimate assumes early Holocene insolation (≈ 1.3% overall increase), and mean annual increases of 2°C in temperature, and 37% in relative humidity. We additionally developed a Holocene precipitation history for Baqan Tso using dated paleolake areas. Using the modern and early Holocene model results as end-members, we estimate precipitation in the western Tibetan Plateau which was 300–380 mm/yr between 5.0 and 11.5 ka, with error of ± 29–57 mm/yr (± 12–15%).

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., and Zhou, W. (2000). Asynchronous Holocene optimum of the East Asian monsoon.. Quat. Sci. Rev. 19, 743762. 10.1016/S0277-3791(99)00031-1.CrossRefGoogle Scholar
Benson, L.V., and Paillet, F.L. (1989). The use of total lake-surface area as an indicator of climatic change: examples from the Lahontan Basin.. Quat. Res. 32, 262275.CrossRefGoogle Scholar
Berger, A., and Loutre, M.F. (1991). Insolation values for the climate of the last 10 million years.. Quat. Sci. Rev. 10, (4), 297317.(1991).CrossRefGoogle Scholar
Bond, G., nine others, (2001). Persistent solar influence on North Atlantic climate during the Holocene.. Science 294, 21302136.CrossRefGoogle ScholarPubMed
Bookhagen, B. (2010). Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya.. Geomagn. Nat. Hazards Risk 1, 3750.CrossRefGoogle Scholar
Brutsaert, W. (1975). On a derivable formula for long-wave radiation from clear skies.. Water Resour. Res. 11, (5), 742744.10.1029/WR011i005p00742.CrossRefGoogle Scholar
Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, L., Wang, X., Tan, L., Liang, F., Wang, J., and Kelly, M. (2012). The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections.. Earth Planet. Sci. Lett. 335–336, (2012), 135144.CrossRefGoogle Scholar
Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P. (2007). Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
Conroy, J.L., and Overpeck, J.T. (2011). Regionalization of present-day precipitation in the greater monsoon region of Asia.. J. Clim. 24, 40734095. 10.1175/2011JCLI4033.1.CrossRefGoogle Scholar
Demske, D., Tarasov, P.E., Wünneman, B., and Riedel, F. (2009). Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172185. 10.1016/j.palaeo.2009.05.008.CrossRefGoogle Scholar
Döberschutz, S., Frenzel, P., Haberzettl, T., Kasper, T., Wang, J., Zhu, L., Daut, G., Schwalb, A., and Mäusbacher, R. (2014). Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China).. J. Paleolimnol. 51, 253266. 10.1007/s10933-013-9702-1.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J. (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China.. Quat. Sci. Lett. 233, 7186.Google Scholar
Fleitman, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman.. Science 300, 17371739.CrossRefGoogle Scholar
Gasse, F., Fontes, J.Ch., Van Campo, E., and Wei, K. (1996). Holocene environmental changes in Baggong Co basin (western Tibet). Part 4: discussion and conclusions.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 120, 7982.CrossRefGoogle Scholar
Gile, L.H., Peterson, F.F., and Grossman, R.B. (1966). Morphological and genetic sequences of carbonate accumulation in desert soils.. Soil Sci. 101, (5), 347360.CrossRefGoogle Scholar
Gupta, A., Anderson, D.M., and Overpeck, J.T. (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean.. Nature 421, 354357.CrossRefGoogle ScholarPubMed
Gupta, A.K., Moumita, D., and Anderson, D.M. (2005). Solar influence on the Indian summer monsoon during the Holocene.. Geophys. Res. Lett. 32, L17703 10.1029/2005GL022685.CrossRefGoogle Scholar
Haginoya, S., Fujii, H., Kuwagata, T., Xu, J., Ishigooka, Y., Kang, S., and Zhang, Y. (2009). Air–lake interaction features found in heat and water exchanges over Nam Co on the Tibetan Plateau.. Scientific Online Letters on the Atmosphere 5, 172175. 10.2151/sola.2009-044.Google Scholar
Herzschuh, U. (2006). Paleo-moisture evolution in monsoonal Central Asia during the last 50,000 years.. Quat. Sci. Rev. 25, 163178.CrossRefGoogle Scholar
Herzschuh, U., Winter, K., Wünneman, B., and Li, S. (2006a). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra.. Quat. Int. 154–155, 113121. 10.1016/j.quaint.2006.02.005.CrossRefGoogle Scholar
Herzschuh, U., Kürschner, H., and Mischke, S. (2006b). Temperature variability and vertical vegetation belt shifts during the last ∼ 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China).CrossRefGoogle Scholar
Hicks, B.B. (1972). Some evaluations of drag and bulk transfer coefficients over water bodies of different sizes.. Bound.-Layer Meteorol. 3, 201213.CrossRefGoogle Scholar
Hostletler, S.W., and Bartlein, P.J. (1990). Simulation of lake evaporation with application to modeling lake level variations of Harney–Malheur Lake, Oregon.. Water Resour. Res. 26, (10), 26032612.Google Scholar
Hou, J., D'Andrea, W.J., and Liu, Z. (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.. Quat. Sci. Rev. 48, 6779.CrossRefGoogle Scholar
Hudson, A.M., and Quade, J. (2013). Long-term east–west asymmetry in monsoon rainfall on the Tibetan Plateau.. Geology 41, 351354. 10.1130/G33837.1.CrossRefGoogle Scholar
Hudson, A.M., Quade, J., Huth, T., Guoliang, L., Olsen, J.W., and Hucai, Z. (2014). Lake-level reconstruction for 2.3–12.8 ka for the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau.. Quat. Res 83, 6679.(in this issue).CrossRefGoogle Scholar
Idso, S.B. (1981). A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies.. Water Resour. Res. 17, (2), 295304. 10.1029/WR017i002p00295.CrossRefGoogle Scholar
Kasper, T., Haberzettel, T., Doberschütz, S., Daut, G., Wang, J., Zhu, L., Nowaczyk, N., and Mäusbacher, R. (2012). Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China).. Quat. Sci. Rev. 39, 7385.CrossRefGoogle Scholar
Kondo, J., and Yamazawa, H. (1986). Bulk transfer coefficient over a snow surface.. Bound.-Layer Meteorol. 34, 123135.CrossRefGoogle Scholar
Kong, P., Na, C., Fink, D., Huang, F., and Ding, L. (2007). Cosmogenic 10Be inferred lake-level changes in Sumxi Co basin, Western Tibet.. J. Asian Earth Sci. 29, 698703.CrossRefGoogle Scholar
Kramer, A., Herzschuh, U., Mischke, S., and Zhang, C. (2010). Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 2341.CrossRefGoogle Scholar
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package.. J. Atmos. Ocean. Technol. 15, 809817. 10.1175/1500-0426(1998)015<0809:TTRMMT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J. (1980). Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energy-balance model.. Quat. Res. 14, 210223.CrossRefGoogle Scholar
Levin, I., Kromer, B., and Hammer, S. (2013). Atmospheric –14CO2 trend in Western European background air from 2000 to 2012.. Tellus B 65, 20092.CrossRefGoogle Scholar
Li, Y., and Morrill, C. (2010). Multiple factors causing Holocene lake-level change in monsoonal and arid central Asia as identified by model experiments.. Clim. Dyn. 35, 11191132.CrossRefGoogle Scholar
Li, B., Sumin, W., Liping, Z., and Yuanfang, L. (2001). 12 ka BP lakeenvironment on the Tibetan Plateau.. Sci. China 44, 324331.(Supp).CrossRefGoogle Scholar
Li, L., Yang, S., Wang, Z., Zhu, X., and Tang, H. (2010). Evidence of warming and wetting climate over the Qinghai–Tibet Plateau.. Arct. Antarct. Alp. Res. 42, 449457. 10.1657/1938-4246-42.4.449.CrossRefGoogle Scholar
Li, Q., Lu, H., Zhu, L., Wu, N., Wang, J., and Lu, X. (2011). Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP.. The Holocene 21, 939950.CrossRefGoogle Scholar
Lu, X., Zhu, L., Nishimura, M., Morita, M., Watanabe, T., Nakamura, T., and Wang, Y. (2011). A high-resolution environmental change record since 19 cal ka BP in Pumoyum Co, southern Tibet.. Geol. 56, 29312940.Google Scholar
McCabe, G.J., and Markstrom, S.L. (2007). A monthly water-balance model driven by a graphical user interface.. U.S. Geological Survey Open-File report 2007-1088 (6pp.).Google Scholar
Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., and Erzinger, J. (2008). Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record.. Palaeogeogr. Palaeoclimatol. Palaeoecol. 267, 5976.CrossRefGoogle Scholar
Mischke, S., Weynell, M., Zhang, C., and Wiechert, U. (2013). Spatial variability of 14C reservoir effects in Tibetan Plateau lakes.. Quat. Int. 313-314, 147155.CrossRefGoogle Scholar
Morrill, C. (2004). The influence of Asian summer monsoon variability on the water balance of a Tibetan Lake.. J. Paleolimnol. 32, 273286.CrossRefGoogle Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, Kam-bui, Shen, C., and Tang, L. (2006). Holocene variations in the Asian Monsoon inferred from the geochemistry of lake sediments in central Tibet.. Quat. Res. 65, 232243.CrossRefGoogle Scholar
Mügler, I., Gleixner, G., Gunther, F., Mäusbacher, R., Daut, G., Schütt, B., Berking, J., Schwalb, A., Schwark, L., Xu, B., Yao, T., Zhu, L., and Yi, C. (2010). A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet.. J. Paleolimnol. 43, 625648.CrossRefGoogle Scholar
Overpeck, J., Anderson, D., Trumbore, S., and Prll, W. (1996). The southwest Indian Monsoon over the last 18000 years.. Clim. Dyn. 12, 213225.CrossRefGoogle Scholar
Owen, L.A. (2009). Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet.. Quat. Sci. Rev. 28, 21502164. 10.1016/j.quascirev.2008.10.020.CrossRefGoogle Scholar
Reimer, P., Baillie, L., Bard, E., Bayliss, A., Beck, W., Blackwell, G., Bronk Ramsey, C., Buck, E., Burr, S., Edwards, L., Friedrich, M., Grootes, M., Guilderson, P., Hajdas, I., Heaton, J., Hogg, G., Hughen, A., Kaiser, F., Kromer, B., McCormac, G., Manning, W., Reimer, W., Richards, A., Southon, R., Talamo, S., Turney, M., van der Plicht, J., and Weyhenmeyer, E. (2009). IntCal09 and Marine 09 radiocarbon age calibration curves, 0–50,000 years kcal BP.. Radiocarbon 51, 11111150.CrossRefGoogle Scholar
Rupper, S., Roe, G., and Gillespie, A. (2009). Spatial patterns of Holocene glacier advance and retreat in Central Asia.. Quat. Res. 72, 337346.CrossRefGoogle Scholar
Seong, B.Y., Owen, L.A., Yi, C., and Finkel, R.C. (2009). Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet.. GSA Bull. 121, (3/4), 348365. 10.1130/B26339.1(March/April 2009).CrossRefGoogle Scholar
Shen, J., Liu, X., Wang, S., and Ryo, M. (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years.. Quat. Int. 136, 131140.Google Scholar
Sinha, A., Cannariato, K.G., Stott, L.D., Li, H.C., You, C.F., Cheng, H., Edwards, R.L., and Singh, I.B. (2005). Variability of Southwest Indian summer monsoon precipitation during the Bølling–Ållerød.. Geology 33, 813816.CrossRefGoogle Scholar
Stuiver, M., and Reimer, R.W. (1993). Extended 14C database and revised CALIB radiocarbon calibration program.. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Styron, R.H., Taylor, M.H., Sundell, K.E., Stockli, D.F., Oalmann, J.A.G., McAllister, A.T., Liu, D., and Ding, L. (2013). Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: evolution of an active detachment system from structural mapping and (U–Th)/He thermochronology.. Tectonics 32, 10.1002/tect.20053.CrossRefGoogle Scholar
Thornthwaite, C.W. (1948). An approach toward a rational classification of climate.. Geogr. Rev. 38, 5594.CrossRefGoogle Scholar
Tian, L., Yao, T., MacClune, K., White, J.W.C., Schilla, A., Vaughn, B., Vachon, R., and Ichiyanagi, K. (2007). Stable isotopic variations in west China: a consideration of moisture sources.. J. Geophys. Res. 112, D10112 10.1029/2006JD007718.Google Scholar
Van Campo, E., and Gasse, F. (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (western Tibet) since 13,000 yr B.P.. Quat. Res. 39, 300313.CrossRefGoogle Scholar
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., and Li, X. (2005). The Holocene Asian Monsoon: links to solar changes and North Atlantic climate.. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z. (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years.. Nature 451, 10901093. 10.1038/nature06692.CrossRefGoogle Scholar
Wischnewski, J., Mischke, S., Wang, Y., and Herzschuh, U. (2011). Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial–a multi-proxy, dual-site approach comparing terrestrial and aquatic signals.. Quat. Sci. Rev. 30, 8297.CrossRefGoogle Scholar
Wolock, D.M., and McCabe, G.J. (1999). Explaining spatial variability in mean annual runoff in the conterminous United States.. Clim. Res. 11, 149159.CrossRefGoogle Scholar
Wunneman, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Blowmendal, J., Diekmann, D., Hartmann, K., Krois, J., Riedel, F., and Arya, N. (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records.. Quat. Sci. Rev. 29, 11381155.CrossRefGoogle Scholar
Yi, C., Chen, H., Yang, J., Liu, B., Fu, P., Liu, K., and Li, S. (2008). Review of Holocene glacial chronologies based on radiocarbon dating in Tibet and its surrounding mountains.. J. Quat. Sci. 23, 533543.CrossRefGoogle Scholar