Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:33:10.504Z Has data issue: false hasContentIssue false

Climate variability in the Aral Sea basin (Central Asia) during the late Holocene based on vegetation changes

Published online by Cambridge University Press:  20 January 2017

Philippe Sorrel
Affiliation:
GeoForschungsZentrum Potsdam, Telegraphenberg, D-14473 Potsdam, Germany
Speranta-Maria Popescu
Affiliation:
Laboratoire PaléoEnvironnements et PaléobioSphère (UMR 5125 CNRS), Université Claude Bernard-Lyon 1, 27–43 boulevard du 11 Novembre, F-69622 Villeurbanne Cedex, France
Stefan Klotz
Affiliation:
Laboratoire PaléoEnvironnements et PaléobioSphère (UMR 5125 CNRS), Université Claude Bernard-Lyon 1, 27–43 boulevard du 11 Novembre, F-69622 Villeurbanne Cedex, France Institut für Geowissenschaften, Universität Tübingen, Sigwartstrasse 10, D-72070 Tübingen, Germany
Jean-Pierre Suc
Affiliation:
Laboratoire PaléoEnvironnements et PaléobioSphère (UMR 5125 CNRS), Université Claude Bernard-Lyon 1, 27–43 boulevard du 11 Novembre, F-69622 Villeurbanne Cedex, France
Hedi Oberhänsli
Affiliation:
GeoForschungsZentrum Potsdam, Telegraphenberg, D-14473 Potsdam, Germany

Abstract

High-resolution pollen analyses (∼ 50 yr) from sediment cores retrieved at Chernyshov Bay in the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe vegetation in the Aral Sea basin during the late Holocene. Using pollen data to quantify climatic parameters, we reconstruct and date for the first time significant changes in moisture conditions in Central Asia during the past 2000 yr. Cold and arid conditions prevailed between ca. AD 0 and 400, AD 900 and 1150, and AD 1500 and 1650 with the extension of xeric vegetation dominated by steppe elements. These intervals are characterized by low winter and summer mean temperatures and low mean annual precipitation (Pmm < 250 mm/yr). Conversely, the most suitable climate conditions occurred between ca. AD 400 and 900, and AD 1150 and 1450, when steppe vegetation was enriched by plants requiring moister conditions (Pmm ∼ 250–500 mm/yr) and some trees developed. Our results are fairly consistent with other late Holocene records from the eastern Mediterranean region and the Middle East, showing that regional rainfall in Central Asia is predominantly controlled by the eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative phase.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., and Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, (2001). 535556.CrossRefGoogle Scholar
Austin, P., Mackay, A., Palagushkina, O., and Leng, M. A high-resolution diatom-inferred palaeoconductivity and sea-level record of the Aral Sea for the last ca. 1600 years. Quaternary Research. Quaternary Research 67, (2007). 383393.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufmann, A. Middle to late Holocene (6500 years period) palaeoclimate in the eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. Issar, A.S., and Brown, N. Water, Environment and Society in Time of Climate Change. (1998). Kluwer Academic Publishers, 203214.Google Scholar
Boomer, I., Aladin, N., Plotnikov, I., and Whatley, R. The palaeolimnology of the Aral Sea: a review. Quaternary Science Reviews 19, (2000). 12591278.Google Scholar
Boroffka, N.G.O., Oberhänsli, H., Achatov, G.A., Aladin, N.V., Baipakov, K.M., Erzhanova, A., Hoernig, A., Krivonogov, S.K., Lobas, D.A., Savel’eva, T.V., and Wuennemann, B. Human settlements on the northern shores of Lake Aral and water level changes. Mitigation and Adaptation Strategies for Global Change 10, (2005). 7185.CrossRefGoogle Scholar
Boroffka, N.G.O., Oberhänsli, H., Sorrel, P., Demory, F., Reinhardt, C., Wünnemann, B., Alimov, K., Baratov, S., Rakhimov, K., Saparov, N., Shirinov, T., and Krivonogov, S.K. Archaeology and climate: Settlement and lake level changes at the Aral Sea. Geoarchaeology 21, 7 (2006). 721734.Google Scholar
Bortnik, V.N., and Chistyaeva, S.P. Hydrometeorology and Hydrochemistry of the USSR Seas. The Aral Sea vol. VII, (1990). Gidrometeoizdat, Leningrad. 196 pp. (in Russian) Google Scholar
Bronk Ramsey, C., (2005). OxCal version 3.10.Google Scholar
Bryson, R.A. Proxy indications of Holocene winter rains in southwest Asia compared with simulated rainfall. Dalfes, H.N., Kukla, G., and Weiss, H. Third Millenium BC; Climate Change and Old World Collapse. NATO ASI Series I vol. 49, (1996). Springer Verlag, 465473.Google Scholar
Cour, P. Nouvelles techniques de détection des flux et de retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 23, 2 (1974). 247258.Google Scholar
Cour, P., and Duzer, D. La signification climatique, édaphique et sédimentologique des rapports entre taxons en analyse pollinique. Annales des Mines de Belgique 7/8, (1978). 155164.Google Scholar
Cour, P., Zheng, Z., Duzer, D., Calleja, M., and Yao, Z. Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Palaeobotany and Palynology 104, (1999). 183204.Google Scholar
El Moslimany, A.P. Ecological significance of common non-arboreal pollen: examples from drylands of the Middle East. Review of Palaeobotany and Palynology 76, 2–4 (1990). 343350.Google Scholar
Esper, J., Schweingruber, F.H., and Winiger, M. 1300 years of climate history for Western Central Asia inferred from tree-rings. Holocene 12, (2002). 267277.Google Scholar
Frumkin, A., Magaritz, M., Carmi, I., and Zak, I. The Holocene climatic record of the salt caves of Mount Sedom, Israel. Holocene 1, (1991). 191200.Google Scholar
Guiot, J. Late Quaternary climatic change in France estimated from multivariate pollen time series. Quaternary Research 28, (1987). 100118.Google Scholar
Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 4969.Google Scholar
Heim, C., (2005). Die Geochemische Zusammensetzung der Sedimente im Aralsee und Sedimentationsprozesse während der letzten 100 Jahre. Diploma thesis, Alfred-Wegener-Institut Bremerhaven, 89 pp.Google Scholar
Hurrell, J. Decadal trends in the North Atlantic Oscillation—Regional temperatures and precipitation. Science 269, (1995). 676679.CrossRefGoogle ScholarPubMed
Hurrell, J., Kushnir, Y., Ottersen, G., and Visbeck, M. An overview of the North Atlantic Oscillation. Hurrell, J., Kushnir, Y., Ottersen, G., and Visbeck, M. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. (2003). AGU, Washington. 135.Google Scholar
Issar, A.S., Govrin, Y., Geyh, A.M., Wakshal, E., and Wolf, M. Climate changes during the Upper Holocene in Israel. Israelian Journal Earth Sciences 40, (1991). 219223.Google Scholar
Klotz, S. Neue Methoden der Klimarekonstruktion-angewendet auf quartäre Pollensequenzen der französischen Alpen. Tübinger Mikropaläontologische Mitteilungen 21, (1999). 169 ppGoogle Scholar
Klotz, S., and Pross, J. Pollen-based reconstructions in the European Pleistocene: the modified indicator species approach as a tool for quantitative analysis. Acta Palaeobotanica, Supplementum 2, (1999). 481486.Google Scholar
Klotz, S., Guiot, J., and Mosbrugger, V. Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global and Planetary Change 36, (2003). 277294.CrossRefGoogle Scholar
Klotz, S., Müller, U., Mosbrugger, V., de Beaulieu, J.L., and Reille, M. Eemian to early Würmian climate dynamics: history and pattern of changes in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 211, (2004). 107126.CrossRefGoogle Scholar
Kremenetski, C.-V., and Tarasov, P.E. Postglacial development of Kazakhstan pine forests. Géographie Physique et Quaternaire 51, 3 (1997). 391404.Google Scholar
Kremenetski, C.-V., Tarasov, P.E., and Cherkinsky, A.E. The latest Pleistocene in Southwestern Siberia and Kazakhstan. Quaternary International 41/42, (1997). 125134.Google Scholar
Landmann, G., Reimer, A., Lemcke, G., and Kempe, S. Dating Late Glacial abrupt climate changes in the 14,570-yr long continuous varve record of Lake Van, Turkey. Palaeogeography, Palaeoclimatology, Palaeoecology 122, (1996). 107118.Google Scholar
Lemcke, G., and Sturm, M. 18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey). Dalfes, H.N., Kukla, G., and Weiss, H. Third Millenium BC; Climate Change and Old World Collapse. NATO ASI Series I vol. 49, (1996). Springer Verlag, 653678.Google Scholar
Létolle, R., and Mainguet, M. Aral. (1993). Springer Verlag, Paris. 358 pp.Google Scholar
Lioubimtseva, E. Arid environments. Shahgedanova, M. Physical Geography of Northern Eurasia. (2002). Oxford University Press, Oxford. 571 pp.Google Scholar
Lioubimtseva, E., Cole, R., Adams, J.M., and Kapustin, G. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments 62, (2005). 285308.CrossRefGoogle Scholar
Lipschitz, N., Lev-Yadun, S., and Waisel, Y. Dendroarchaeological investigations sin Israel (Asada). Israel Exploration Journal 31, (1981). 230234.Google Scholar
Mosbrugger, V., and Utescher, T. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134, (1997). 6186.Google Scholar
New, M., Hulme, M., and Jones, P. Representing twentieth century space-time climate variability. I: development of a 1961–1990 mean monthly terrestrial climatology. Journal of Climate 12, (1999). 829856.Google Scholar
Nezlin, N.P., Kostianoy, A.G., and Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. Journal of Arid Environments 62, (2005). 677700.Google Scholar
Nourgaliev, D.K., Heller, F., Borisov, A.S., Hajdas, I., Bonani, G., Iassonov, P.G., and Oberhänsli, H. Very high resolution paleosecular variation record for the last 1200 years from the Aral Sea. Geophysical Research Letters 30, 17 (2003). 4-14-4.Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.L., Bottema, S., and Andreu, V. Climate reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research 49, (1998). 183196.Google Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19, (1992). 117134.Google Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, (1996). 185194.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Lawrence Edwards, R., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weiyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal. yr BP. Radiocarbon 46, 3 (2004). 10291058.Google Scholar
Roberts, N., and Wright, H.E. Vegetational, lake-level, and climatic history of the Near East and Southwest Asia. Wright, H.E. Global Climates since the Last Glacial Maximum. (1993). University of Minnesota Press, 194220.Google Scholar
Rubanov, I.V., Ischniyanov, D.P., and Baskakova, M.A. Geology of the Aral Sea. Tashkent (1987). 248 pp. (in Russian) Google Scholar
Schilman, B., Bar-Matthews, M., Almogi-Labin, A., and Luz, B. Global climate instability reflected by Eastern Mediterranean marine records during the Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 176, (2001). 157176.Google Scholar
Schilman, B., Ayalon, A., Bar-Matthews, M., Kagan, E.J., and Almogi-Labin, A. Sea–land palaeoclimate correlation in the Eastern Mediterranean region during the Late Holocene. Israel Journal of Earth Sciences 51, (2002). 181190.Google Scholar
Seredkina, E.A. Dust storms in Kazakhstan (Pyl’nie buri v Kazakhstane). Proceedings of KazNIGMI 15, (1960). 5459. (in Russian) Google Scholar
Sorrel, P., Popescu, S.-M., Head, M.J., Suc, J.P., Klotz, S., and Oberhänsli, H. Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 2–4 (2006). 304327.CrossRefGoogle Scholar
Tarasov, P.E., (1992). Holocene palaeogeography of the steppe zone of Northern and Central Kazakhstan. Thesis, Moscow University, 213 pp.Google Scholar
Tarasov, P.E., Jolly, D., and Kaplan, J.O. A continuous Late Glacial and Holocene record of vegetation changes in Kazakhstan. Palaeogeography, Palaeoclimatology, Palaeoecology 136, (1997). 281292.Google Scholar
Tarasov, P.E., Webb, T. III, Andreev, A.A., Afanas'eva, N.B., Berezina, N.A., Bezusko, L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M., Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, L.V., Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov, D.V., Volkova, V.S., and Zernitskaya, V.P. Present-day and mid-Holocene biomes reconstructed from pollen and plant macropast data from the former Soviet Union and Mongolia. Journal of Biogeography 25, (1998). 10291053.Google Scholar
Tarasov, P.E., Cheddadi, R., Guiot, J., Bottema, S., Peyron, O., Belmonte, J., Ruiz-Sanchez, V., Saadi, F.A., and Brewer, S. A method to determine warm and cool steppe biomes from pollen data; application to the Mediterranean and Kazakhstan regions. Journal of Quaternary Sciences 13, (1998). 335344.3.0.CO;2-A>CrossRefGoogle Scholar
Van Campo, E., Cour, P., and Sixuan, H. Holocene environmental changes in Bangong Co Basin (Western Tibet). Part 2: The pollen record. Palaeogeography, Palaeoclimatology, Palaeoecology 120, (1996). 4963.Google Scholar
Velichko, A.A. The relationship of the climatic changes in the high and low latitudes of the Earth during the Late Pleistocene and Holocene. Velichko, A.A. et al. Paleoclimates and Glaciation in the Pleistocene. (1989). Nauka Press, Moscow. 519.Google Scholar
Zavialov, P.O., (2005). Physical oceanography of the dying Aral Sea. Springer Verlag, published in association with Praxis Publishing, Chichester, UK., 146 pp.Google Scholar