Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T19:18:42.720Z Has data issue: false hasContentIssue false

Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

Published online by Cambridge University Press:  20 January 2017

Christa Placzek
Affiliation:
Department of Geosciences and Desert Laboratory, University of Arizona, Tucson, Arizona, 85721, E-mail: [email protected]
Jay Quade
Affiliation:
Department of Geosciences and Desert Laboratory, University of Arizona, Tucson, Arizona, 85721, E-mail: [email protected]
Julio L. Betancourt
Affiliation:
U.S. Geological Survey, Desert Laboratory, 1675 West Anklam Road, Tucson, Arizona, 85745

Abstract

Lacustrine deposits exposed around Lake Aricota, Peru (17° 22′S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B, Binford, M.W, Brenner, M, and Kelts, K.R A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47, (1997). 169 180.CrossRefGoogle Scholar
Abbott, M, Seltzer, G.O, Kelts, K.R, and Southon, J Holocene paleohydrology of the tropical Andes from lake records. Quaternary Research 47, (1997). 70 80.CrossRefGoogle Scholar
Abbott, M.B, Wolfe, B, Aravena, R, Wolfe, A.P, and Seltzer, G.O Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Sciences Reviews 19, (2000). 1801 1820.CrossRefGoogle Scholar
Baker, P.A, Seltzer, G.O, Fritz, S.C, Dunbar, R.B, Grove, M.J, Tapia, P.M, Cross, S.L, Rowe, H.D, and Broda, J.P The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640 643.CrossRefGoogle ScholarPubMed
Baker, P.A, Rigsby, C.A, Seltzer, G.O, Fritz, S.C, Lowenstein, T.K, Bacher, N.P, and Veliz, C Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, (2001). 698 701.CrossRefGoogle ScholarPubMed
Betancourt, J.L, Latorre, C, Rech, J.A, Quade, J, and Rylander, K.A A 22,000-yr record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, (2000). 1542 1545.CrossRefGoogle Scholar
Bobst, A, Lowenstein, T. K, Jordan, T. E, Godfrey, L. V, Hein, M. C, Ku, T.-L, and Luo, S. (in press), A 106 ka paleoclimate record from the Salar de Atacama, Northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Clement, A.C, Seager, R, and Cane, M.A Suppression of El Niño during the mid- Holocene by changes in the earth's orbit. Palaeoceanography 15, (2000). 731 737.CrossRefGoogle Scholar
Cole, J.E A slow dance for El Niño. Science 291, (2001). 1496 1497.CrossRefGoogle ScholarPubMed
Cross, S.L, Baker, P.A, Seltzer, G.O, Fritz, S.C, and Dunbar, R.B A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene 10, (2000). 21 32.CrossRefGoogle Scholar
Fontugne, M, Usselmann, P, Lavallee, D, Julien, M, and Hatte, C El Niño variability in the coastal desert of southern Peru during the Mid-Holocene. Quaternary Research 52, (1999). 171 179.CrossRefGoogle Scholar
Geyh, M.A, Grosjean, M, Nuñez, L, and Schotterer, U Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama desert. Quaternary Research 52, (1999). 143 153.CrossRefGoogle Scholar
Gilbert, G.K Lake Bonneville. United States Geological Survey Monograph (1890). 65 70.Google Scholar
Grosjean, M, Geyh, M.A, Messerli, B, and Schotterer, U Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano. Journal of Paleolimnology 14, (1995). 241 252.CrossRefGoogle Scholar
Grosjean, M, van Leeuwen, J.F.N, van der Knaap, W.O, Geyh, M.A, Ammann, B, Tanner, W, Messerli, B, Nuñez, L.A, Valero-Garces, B.L, and Veit, H A 22,000 14C year B.P. sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global and Planetary Change 553, (2000). 1 17.Google Scholar
Holmgren, C, Betancourt, J.L, Rylander, K.A, Roque, J, Tovar, O, Zeballos, H, Linares, E, and Quade, J Holocene vegetation history from fossil rodent middens near Arequipa, Peru. Quaternary Research 56, (2001). 242 CrossRefGoogle Scholar
Kull, C, and Grosjean, M Albedo changes, Milankovitch forcing, and late Quaternary climate changes in the central Andes. Climate Dynamics 14, (1998). 871 881.CrossRefGoogle Scholar
Lenters, J.D, and Cook, K.H Summertime precipitation variability over South America: Role of the large-scale circulation. Monthly Weather Review 127, (1999). 409 431.2.0.CO;2>CrossRefGoogle Scholar
Liu, Z, Kutzbach, J, and Wu, L Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, (2000). 2265 2268.CrossRefGoogle Scholar
Mourguiart, P, Correge, T, Wirrmann, D, Argollo, J, Montenegro, M.E, Pourchet, M, and Carbonel, P Holocene palaeohydrology of Lake Titicaca estimated from an ostracod-based transfer function. Palaeogeography, Palaeoclimatology, Palaeoecology 143, (1998). 51 72.CrossRefGoogle Scholar
Schwalb, A, Burns, S.J, and Kelts, K Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 148, (1999). 153 168.CrossRefGoogle Scholar
Seltzer, G Recent glacial history and paleoclimate of the Peruvian-Bolivian Andes. Quaternary Science Reviews 9, (1990). 137 152.CrossRefGoogle Scholar
Seltzer, G.O, Baker, P, Cross, S, Dunbar, R, and Fritz, S High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: Evidence for Holocene aridity in the tropical Andes. Geology 26, (1998). 167 170.2.3.CO;2>CrossRefGoogle Scholar
Seltzer, G, Rodbell, D, and Burns, S Isotopic evidence for late Quaternary climate change in tropical South America. Geology 28, (2000). 35 38.2.0.CO;2>CrossRefGoogle Scholar
Stuiver, M, and Reimer, P.J Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215 230.CrossRefGoogle Scholar
Sylvestre, F, Servant, M, Servant-Vildary, S, Causse, C, Fournier, M, and Ybert, J.-P Lake-level chronology on the southern Bolivian Altiplano (18°–23° S) during Late-Glacial time and the early Holocene. Quaternary Research 51, (1999). 54 66.CrossRefGoogle Scholar
Thompson, L.G, Davis, M.E, Mosley-Tompson, E, Sowers, T.A, Henderson, K.A, Zagorodnov, V.S, Lin, P.-N, Mikhalenko, V.N, Campen, R.K, Bolzan, J.F, Cole-Dai, J, and Francou, B A 25,000-year tropical climate history from Bolivian ice cores. Science 282, (1998). 1858 1864.CrossRefGoogle ScholarPubMed
Trewartha, G The Earth's Problem Climates. (1981). Univ. of Wisconsin Press, Madison.Google Scholar
Valero-Garcés, B.L, Grosjean, M, Schwalb, A, Geyh, M, Messerli, B, and Kelts, K Limnogeology of Laguna Miscanti: Evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). Journal of Paleolimnology 16, (1996). 1 21.CrossRefGoogle Scholar
Vuille, M Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. International Journal of Climatology 19, (1999). 1579 1600.3.0.CO;2-N>CrossRefGoogle Scholar
Vuille, M, and Ammann, C Regional snowfall patterns in the high, arid Andes. Climatic Change 36, (1997). 413 423.CrossRefGoogle Scholar
Vuille, M, Bradley, R, and Keimig, F Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105, (2000). 12,447 12,460.CrossRefGoogle Scholar
Wirrmann, D, and Alameida, F.L Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, (1987). 315 323.CrossRefGoogle Scholar
Zhou, J, and Lau, K.M Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 1020 1040.2.0.CO;2>CrossRefGoogle Scholar