Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T13:12:45.316Z Has data issue: false hasContentIssue false

Ionic regulation of egg activation

Published online by Cambridge University Press:  17 March 2009

M. J. Whitaker
Affiliation:
Department of Physiology, University College London, Gower Street, London WC1
R. A. Steinhardt
Affiliation:
Department of Zoology, University of California, Berkeley, CA 94720

Extract

Developing cells have constantly to make decisions: when to proliferate and divide, when and how to differentiate. It is an increasingly attractive idea that these decisions involve changes in intracellular cation concentrations. Our ideas about the mechanisms of changes in intracellular cations come largely from the application of biophysical techniques in the study of excitable tissues. These ideas are proving very valuable to the investigation of the control of proliferation and cell development and it is evident that the ionic mechanisms which pertain in nerve and muscle have their counterparts in other cells. Just as alterations in intracellular ion concentrations serve a signalling function in excitable tissue, so too they act as signals during development. Since almost all the quantitative data on the ionic mechanisms of fertilization come from work on sea urchins we have confined our review to sea urchin eggs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aketa, K. (1975). Physiological studies on the sperm surface component responsible for sperm–egg binding in sea urchin fertilization. Expl Cell Res. 90, 5662.CrossRefGoogle ScholarPubMed
Aketa, K., Bianchetti, R., Marré, E. & Monroy, A. (1964). Hexose monophosphate level as a limiting factor for respiration in unfertilized sea urchin eggs. Biochim. biophys.Acta 86, 211215.CrossRefGoogle ScholarPubMed
Aketa, K. & Ohta, T. (1977). When do sperm of the sea urchin Pseudocentrotus depressus undergo the acrosome reaction at fertilization? Devl. Biol. 61, 366372.CrossRefGoogle ScholarPubMed
Aketa, K. & Onitake, K. (1969). Effect on fertilization of antiserum against sperm binding protein from homo- and heterologous sea urchin egg surfaces. Expl Cell Res. 56, 8486.CrossRefGoogle ScholarPubMed
Aketa, K., Onitake, K. & Tsuzuki, H. (1972). Tryptic disruption of sperm binding sites of sea urchin surface. Expl Cell Res. 71, 2732s.CrossRefGoogle ScholarPubMed
Allen, R. D. (1954). Fertilization and activation of sea urchin eggs in glass capillaries. Expl Cell Res. 6, 403424.CrossRefGoogle ScholarPubMed
Allen, R. D. & Griffin, J. L. (1958). The time sequence of early events in the fertilization of sea urchin eggs. i. The latent period and the cortical reaction. Expl Cell Res. 15, 163173.CrossRefGoogle ScholarPubMed
Alvarez-Leefmans, F. J., Rink, T. J. & Tsien, R. Y. (1981). Free calcium ions in neurones of Helix aspersa measured with ion-selective microelectrodes. J. Physiol., Lond. 315, 531548.CrossRefGoogle Scholar
Ashley, C. C. & Campbell, A. K. (eds.) (1979). Detection and Measurement of Free Ca2+ in Cells. Amsterdam: Elsevier/North Holland.Google Scholar
Aune, T. & Epel, D. (1978). Increased intracellular pH shifts the subcellular location of G6PDH. J. Cell Biol. 79, 164a.Google Scholar
Aune, T. & Epel, D. (1982). Site of glucose-6-phosphate dehydrogenase binding in sea urchin egg homogenates: phospholipids of the cortex. (In preparation.)Google Scholar
Azarnia, R. & Chambers, E. L. (1976). The role of divalent cations in the activation of the sea urchin egg. i. Effects of fertilization on divalent cation content. J. exp. Zool. 198, 6578.CrossRefGoogle ScholarPubMed
Baker, P. F. (1976). The regulation of intracellular calcium. Symp. Soc. exp. Biol. no. 30, 6788.Google Scholar
Baker, P. F. & Knight, D. E. (1980). Gaining access to the site of exocytosis in bovine adrenal medullary cells. J. Physiol., Paris 76, 497504.Google Scholar
Baker, P. F., Knight, D. E. & Whitaker, M. J. (1980 a). The relation between the ionised calcium concentration and cortical granule exocytosis in the egg of the sea-urchin, Echninus esculentus. Proc. R. Soc. Lond. B 207, 149161.Google Scholar
Baker, P. F., Knight, D. E. & Whitaker, M. J. (1980 b). Calcium and the control of exocytosis. In Calcium Binding Proteins, Structure and Function (ed. Siegel, F. L.). New York: N. Holland.Google Scholar
Baker, P. F. & Presley, R. (1969). Kinetic evidence for an intermediate stage in the fertilization of the sea urchin egg. Nature, Lond. 221, 488490.CrossRefGoogle ScholarPubMed
Baker, P. F. & Presley, R. (1970). Promotion of polyspermy in the sea urchin egg by nicotine and its antagonism by curare. J. Physiol., Lond. 213, 6263P.Google Scholar
Baker, P. F. & Whitaker, M. J. (1978). The influence of ATP and calcium on the cortical reaction in sea-urchin eggs. Nature, Lond. 276, 513515.CrossRefGoogle ScholarPubMed
Baker, P. F. & Whitaker, M. J. (1979). Calcium activation of the cortical reaction in sea urchin eggs. Reply, matters arising, Nature, Lond. 279, 820.Google Scholar
Baker, P. F. & Whitaker, M. J. (1980). Trifluoperazine inhibits exocytosis in sea urchin eggs. J. Physiol., Lond. 298, 55P.Google ScholarPubMed
Ballinger, D. G. & Hunt, T. (1981). Fertilization of sea urchin eggs is accompanied by 40 S ribosomal sub-unit phosphorylation. Devl Biol. 87, 277285.CrossRefGoogle Scholar
Barton, J. K., Den, Hollander J. A., Lee, T. M., MacLaughlin, A. & Shulman, R. G. (1980) Measurement of the internal pH of yeast spores by 31P nuclear magnetic resonance. Proc. natn. Acad. Sci. U.S.A. 77, 24702475.CrossRefGoogle ScholarPubMed
Begg, D. A. & Reehun, L. I. (1979). pH regulates the polymerisation of actin in the sea urchin egg cortex. J. Cell Biol. 83, 241248.CrossRefGoogle ScholarPubMed
Begg, D. A., Rebhun, L. I. & Hyatt, H. (1982). Structural organization of actin in the sea urchin egg cortex: microvillar elongation in the absence of actin filament bundle formation. J. Cell Biol. 93, 2432.CrossRefGoogle ScholarPubMed
Berridge, M. J. (1975). Control of cell division: a unifying hypothesis. J. Cyclic Nucleotide Res. 1, 305320.Google ScholarPubMed
Boldt, J., Schuel, H., Schuel, R., Dandekar, P. & Troll, W. (1980). A peroxide-mediated block to polyspermy in sea urchins. J. Cell Biol. 87, 134a.Google Scholar
Bolus-Jensen, A. (1953). The effect of trypsin on the cross-fertilizability of sea urchin eggs. Expl. Cell Res. 5, 325336.CrossRefGoogle Scholar
Boveri, T. (1888). Zellenstudien. Heft 4. Fischer, Jena.Google Scholar
Brandis, J. W. & Raff, R. A. (1979). Elevation of protein synthesis is a complex response to fertilization. Nature, Lond. 278, 467469.CrossRefGoogle Scholar
Brandriff, B., Hinegardner, R. T. & Steinhardt, R. A. (1975). Development and life cycle of the parthenogenetically activated sea-urchin embryo. J. exp. Zool. 192, 1324.CrossRefGoogle ScholarPubMed
Byrd, E. W. Jr. & Collins, F. D. (1975). Absence of fast block in eggs of the sea urchin Strongylocentrotus purpuratus. Nature, Lond. 257, 675677.CrossRefGoogle ScholarPubMed
Byrd, W. & Perry, G. (1980). Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Expl. Cell Res. 126, 333342.CrossRefGoogle ScholarPubMed
Campisi, J. & Scandella, C. J. (1980). Calcium-induced decrease in membrane fluidity of sea urchin cortex after fertilization. Nature, Lond. 286, 185186.CrossRefGoogle ScholarPubMed
Carroll, E. J. & Epel, D. (1981). Re-evaluation of cell surface protein release and its role in regulation of protein synthesis. Devl Biol. 87, 374378.CrossRefGoogle Scholar
Carroll, E. J., Byrd, E. W. & Epel, D. (1977). A novel procedure for obtaining denuded sea urchin eggs and observations on the role of the vitelline layer in sperm reception and egg activation. Expl Cell Res. 108, 365374.CrossRefGoogle ScholarPubMed
Chambers, E. L. (1939). The movement of the egg nucleus in relation to the sperm aster in the echinoderm egg. J. exp. Biol. 16, 409424.CrossRefGoogle Scholar
Chambers, E. L. (1972). Effect of fertilization on Na and K content and Na flux in the sea-urchin egg. Physiologist 15, 103.Google Scholar
Chambers, E. L. (1976). Na is essential for activation of the inseminated sea urchin egg. J. exp. Zool. 197, 149154.CrossRefGoogle Scholar
Chambers, E. L. (1980). Fertilization and cleavage of the eggs of the sea urchin Lytechinus variegatus in Ca2+ -free sea water. Eur. J. Cell Biol. 22, 476.Google Scholar
Chambers, E. L. & Angeloni, S. V. (1981). Is external calcium required for fertilization of sea urchin eggs by acrosome-reacted sperm? J. Cell Biol. 91, 181a.Google Scholar
Chambers, E. L. & de, Armendi J. (1979). Membrane potential, action potential and activation potential of the eggs of the sea urchin Lytechinus variegatus. Expl Cell Res. 122, 203218.CrossRefGoogle ScholarPubMed
Chambers, E. L. & Dimich, R. A. (1975). A Na requirement for cytoplasmic and nuclear activation of sea urchin eggs by sperm and divalent ionophores. J. gen. Physiol. 66, 9a.Google Scholar
Chambers, E. L. & Hinkley, R. E. (1979). Non-propagative cortical reactions induced by the divalent ionophore A23 187 in eggs of the sea-urchin Lytechinus variegatus. Expl Cell Res. 124, 441446.CrossRefGoogle Scholar
Chambers, E. L., Pressman, B. C. & Rose, R. E. (1974). The activation of sea urchin eggs by the divalent ionophores A23 187 and X-537A. Biochem. biophys. Res. Commun 60, 126132.CrossRefGoogle Scholar
Chandler, D. E. & Heuser, J. (1979). Membrane fusion during secretion: cortical granule exocytosis in sea urchins studied by quick-freezing and freeze-fracture. J. Cell Biol. 83, 91108.CrossRefGoogle ScholarPubMed
Chase, D. G. (1967). Inhibition of the cortical reaction by high hydrostatic pressures and its effects on the fertilization and early development of sea urchin eggs. Ph.D. thesis, University of Washington, Seattle.Google Scholar
Coburn, M., Schuel, H. & Troll, W. (1981). A hydrogen peroxide block to polyspermy in the sea urchin. Devl Biol. 84, 235238.CrossRefGoogle ScholarPubMed
Coffey, R. G., Hadden, E. M. & Hadden, J. W. (1981). Phytohaemagglutinin stimulation of guanylate cyclase in human lymphocytes. J. biol. Chem. 256, 44184424.CrossRefGoogle ScholarPubMed
Collins, F. (1976). A re-evaluation of the fertilizin hypothesis of sperm agglutination and the description of a novel form of sperm adhesion. Devl Biol. 49, 381394.CrossRefGoogle Scholar
Collins, F. & Epel, D. (1977). The role of calcium ions in the acrosome reaction of sperm: regulation of exocytosis. Expl Cell Res. 106, 211222.CrossRefGoogle ScholarPubMed
Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. (1981). Inward currents activated by intracellular Ca in cultured cardiac cells. Nature, Lond. 294, 752754.CrossRefGoogle ScholarPubMed
Cuthbert, A. & Cuthbert, A. W. (1978). Fertilisation acid production in Psammechinus eggs under pH clamp conditions and the effects of some pyrazine derivatives. Expl Cell Res. 114, 409415.CrossRefGoogle ScholarPubMed
Cuthbertson, K. S. R., Whittingham, D. G. & Cobbold, P. H. (1981). Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature, Lond. 294, 754757.CrossRefGoogle ScholarPubMed
Dale, B., de, Felice L. J. & Taglietti, V. (1978). Membrane noise and conductance increase during single spermatozoon-egg interactions. Nature, Lond. 275, 217219.CrossRefGoogle ScholarPubMed
Dale, B. & de, Santis A. (1981). Maturation and fertilization of the sea urchin oocyte: an electrophysiological study. Devl Biol. 85, 474484.CrossRefGoogle ScholarPubMed
Dale, B. & Monroy, A. (1981). How is polyspermy prevented? Gamete Res. 4, 151169.CrossRefGoogle Scholar
Danilchik, M. V. & Hille, M. B. (1981). Sea urchin egg and embryo ribosomes: differences in translational activity in a cell-free system. Devl Biol. 84, 291298.CrossRefGoogle Scholar
Decker, G. L. & Lennarz, W. J. (1979). Sperm binding and fertilization envelope formation in a cell surface complex isolated from sea urchin eggs. J. Cell Biol. 81, 92103.CrossRefGoogle Scholar
De, Felice L. J. & Dale, B. (1979). Voltage response to fertilization and polyspermy in sea-urchin eggs and oocytes. Devl Biol. 72, 327341.Google Scholar
De, Lorenzo R. J. (1981). The calmodulin hypothesis of neurotransmission. Cell Calcium 2, 365385.Google Scholar
De, Lorenzo R. J., Freedman, S. D., Yohe, W. B. & Meurer, S. C. (1979). Ca2+ -dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc. natn. Acad. Sci. U.S.A. 76, 18381842.Google Scholar
Denny, P. C. & Tyler, A. (1964). Activation of protein synthesis in the non-nucleate fragments of sea urchin eggs. Biochem. biophys. Res. Commun 14, 245249.CrossRefGoogle ScholarPubMed
Douglas, W. W. (1968). Stimulus-secretion coupling: the concept and clues from chromaftin and other cells. Br. J. Pharmacol. 34, 451474.CrossRefGoogle ScholarPubMed
Douglas, W. W. (1975). In Calcium Transport in Contraction and Secretion (ed. Carafoli, E., Clementi, F.Drabiknowski, W. and Margreth, A.), pp. 167174. Amsterdam: N. Holland.Google Scholar
Eddy, B. M. & Shapiro, B. M. (1976). Changes in the topography of the sea urchin egg after fertilization. J. Cell Biol. 71, 3548.CrossRefGoogle ScholarPubMed
Engstrom, W. (1981 a). Calcium requirement for mitogenic stimulation of 3T3 cells in low and high serum concentration. Cell Biol. Int. Reports 5, 509516.CrossRefGoogle ScholarPubMed
Engstrom, W. (1981 b). Intracellular pH during mitogenic stimulation induced by alkaline pH. Cell Biol. Int. Reports 5, 10631070.CrossRefGoogle ScholarPubMed
Engstrom, W. & Zetterberg, A. (1981). Membrane protein detachment and mitogenic stimulation induced by alkaline pH. Cell Biol. Int. Reports 5, 509516.CrossRefGoogle ScholarPubMed
Epel, D. (1964 a). A primary metabolic change at fertilization: interconversion of pyridine nucleotides. Biochem. biophys. Res. Commun 17, 6268.CrossRefGoogle Scholar
Epel, D. (1964 b). Simultaneous measurement of TPHN formation and respiration following fertilization of the sea urchin egg. Biochem. biophys. Res. Commun 17, 6978.CrossRefGoogle Scholar
Epel, D. (1967). Protein synthesis in sea urchin eggs: a late response to fertilization. Proc. natn. Acad. Sci. U.S.A. 57, 899906.CrossRefGoogle ScholarPubMed
Epel, D. (1972). The activation of a Na-dependent amino acid transport system upon fertilization of sea urchin eggs. Expl Cell Res. 72, 7489.CrossRefGoogle ScholarPubMed
Epel, D. (1978). Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr. Tops Devl Biol. 12, 185246.CrossRefGoogle ScholarPubMed
Epel, D. (1979). The triggering of development at fertilization. In Mechanisms of Cell Change (ed. Ebert, J. and Okada, T.), pp. 1731. New York: Wiley.Google Scholar
Epel, D. (1980). Experimental analysis of the role of intracellular calcium in the activation of the sea urchin egg at fertilization. In The Cell Surface (ed. Subtelny, S. and Wessels, N. K.), pp. 169185. New York: Academic.Google Scholar
Epel, D., Cross, N. L. & Epel, N. (1977). Flagellar motility is not involved in the incorporation of the sperm into the egg at fertilization. Develop. Growth & Different. 19, 1521.CrossRefGoogle Scholar
Epel, D., Patton, C., Wallace, R. W. & Cheung, W. Y. (1981). Calmodulin activates NAD kinase of sea urchin eggs: an early event of fertilization. Cell 23, 543549.CrossRefGoogle ScholarPubMed
Epel, D., Perry, G. & Schmidt, T. (1982). Intracellular calcium and fertilization: role of the cation and regulation of intracellular calcium levels. In Membranes in Growth and Development (ed. Hoffman, J. F., Giebisch, G. H. and Bolus, L.), pp. 171185. New York: Alan R. Liss.Google Scholar
Epel, D., Steinhardt, R. A., Humphreys, T. & Mazia, D. (1974). An analysis of the partial metabolic derepression of the sea urchin egg by ammonia; the existence of independent pathways. Devl Biol. 40, 245255.CrossRefGoogle ScholarPubMed
Epel, D. & Vacquier, V. D. (1978). Membrane fusion events during invertebrate fertilization. Cell Surface Rev. 5, 163.Google Scholar
Foerder, C. A. & Shapiro, B. M. (1977). Release of ovoperoxidase from sea-urchin eggs hardens the fertilization membrane with tyrosine crosslinks. Proc. natn. Acad. Sci. U.S.A. 74, 42144218.CrossRefGoogle ScholarPubMed
Foerder, C. A., Klebanoff, S. J. & Shapiro, B. M. (1978). Hydrogen peroxide production, chemiluminescence and the respiratory burst of fertilization: interrelated events in early sea urchin development. Proc. natn. Acad. Sci. U.S.A. 75, 31833187.CrossRefGoogle ScholarPubMed
Gilkey, J. C. (1981). Mechanisms of fertilization in fishes. Am. Zool. 21, 359375.CrossRefGoogle Scholar
Gilkey, J. C., Jaffe, L. F., Ridgway, E. B. & Reynolds, G. T. (1978). A free calcium wave traverses the activating egg of the Medaka, Oryzias latipes. J. Cell Biol. 76, 448466.CrossRefGoogle ScholarPubMed
Gillies, R. J. & Deamer, D. W. (1979). Intracellular pH: methods and applications. Curr. Top. Bioenerg. 9, 6389.CrossRefGoogle Scholar
Giudice, G. (1973). Developmental Biology of the Sea Urchin Embryo. New York, London: Academic Press.Google Scholar
Glabe, C. G. (1978). Ph.D. thesis, University of California, Davis.Google Scholar
Glabe, C. G. & Vacquier, V. D. (1977). Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature, Lond. 267, 836838.CrossRefGoogle ScholarPubMed
Glabe, C. G. & Vacquier, V. D. (1978). Egg surface glycoprotein receptor for sea urchin sperm binding. Proc. natn. Acad. Sci. U.S.A. 75, 881885.CrossRefGoogle Scholar
Glabe, C. G. & Lennarz, W. J. (1979). Species-specific sperm adhesion in sea-urchins. Expl Cell Res. 80, 111119.Google Scholar
Glabe, C. G. & Lennarz, W. J. (1981). Isolation and partial characterisation of a high molecular weight glycoconjugate, derived from the egg surface, which is implicated in sperm-egg adhesion. J. Supramol. Struct. Cell. Biochem. 15, 387394.CrossRefGoogle Scholar
Glabe, C. G., Buchalter, M. & Lennarz, W. J. (1981). Studies on the interactions of sperm with the surface of the sea urchin egg. Devl Biol. 84, 397406.CrossRefGoogle ScholarPubMed
Glabe, C. G., Grabel, L. B., Vacquier, V. D. & Rosen, S. D. (1982). Carbohydrate specificity of sea urchin sperm bindin: a cell surface lectin mediating sperm-egg adhesion. J. Cell Biol. 94, 123128.CrossRefGoogle ScholarPubMed
Grainger, J. L. (1978). Activation of the sea urchin egg: the role of the cell surface and intracellular environment. Ph.D. thesis, University of California, Berkeley.Google Scholar
Grainger, J. L., Winkler, M. M., Shen, S. S. & Steinhardt, R. A. (1979). Intracellular pH controls protein synthesis rate in sea urchin eggs and early embryos. Devl Biol. 68, 396406.CrossRefGoogle Scholar
Gross, P. R. & Cousineau, G. H. (1963). Effects of actinomycin D on macromolecular synthesis and early development in sea urchin eggs. Biochem. biophys. Res. Commun 10, 321326.CrossRefGoogle Scholar
Gould-Somero, M. (1981). Localised gating of egg Na+ channels by sperm. Nature, Lond. 291, 254256.CrossRefGoogle Scholar
Gould-Somero, M. & Holland, L. Z. (1979). Electrically-mediated fast block to polyspermy in the eggs of the marine worm, Urechis caupo. J. Cell Biol. 83, 426440.CrossRefGoogle Scholar
Gumaa, K. A., McLean, T. & Greenbaum, A. L. (1971). Compartmentalisation in relation to metabolic control in liver. Essays Biochem. 7, 3986.Google Scholar
Hagiwara, S. & Jaffe, L. A. (1979). Electrical properties of egg cell membranes. Ann. Rev. Biophys. Bioeng. 8, 385416.CrossRefGoogle Scholar
Hagstrom, B. E. & Hagstrom, B.The action of trypsin and chymotrypsin on the sea urchin egg. Expl Cell Res. 6, 532534.CrossRefGoogle Scholar
Hallett, M. B. & Campbell, A. K. (1982). Measurements of changes in cytoplasmic free Ca2+ in fused cell hybrids. Nature, Lond. 295, 155158.CrossRefGoogle ScholarPubMed
Hamaguchi, Y. & Hiramoto, Y. (1981). Activation of sea urchin eggs by micro-injection of calcium buffers. Expl Cell Res. 134, 171179.CrossRefGoogle Scholar
Hamaguchi, Y. & Kuriyama, R. (1982). Aster formation and cleavage initiation of sea urchin eggs by microinjection of calcium buffers and centriolar complexes isolated from starfish spermatozoa. Expl Cell Res. (in the Press).CrossRefGoogle Scholar
Harvey, E. B. (1956). The American Arbacia and other sea urchins. Princeton University Press.CrossRefGoogle Scholar
Hathaway, R. R. & Metz, C. B. (1961). Interaction between Arbacia sperm and S35-labelled fertilizin. Biol. Bull. mar. biol. Lab. Woods Hole 120, 360369.CrossRefGoogle Scholar
Heilbrunn, L. V. (1937). An Outline of General Physiology. Philadelphia: Saunders.Google Scholar
Hertwig, O. (1876). Beitraege zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen eies. Morph. Jb. 1, 347432.Google Scholar
Hille, M. B. & Albers, A. A. (1979). Efficiency of protein synthesis after fertilization. Nature, Lond. 278, 469471.CrossRefGoogle Scholar
Hinegardner, R. T., Rao, B. & Feldman, D. E. (1964). The DNA synthetic period during early development of the sea urchin egg. Expl Cell Res. 36, 5361.CrossRefGoogle ScholarPubMed
Hino, A., Tazawa, E. & Yasumasu, I. (1978). Two pathways from glycogen to glucose-6-phosphate in sea urchin eggs with special reference to the difference between the species in the contribution of each pathway. Gamete Res. 1, 117128.CrossRefGoogle Scholar
Hino, A. & Yasumasu, I. (1979). Changes in the glycogen content of sea urchin eggs during early development. Develop. Growth & Different 21, 229236.CrossRefGoogle ScholarPubMed
Hiramoto, H. (1974). Mechanical properties of the surface of the egg at fertilization and during cleavage. Expl Cell Res. 89, 320326.CrossRefGoogle ScholarPubMed
Hovi, T., Allison, A. C. & Williams, S. C. (1976). Proliferation of human peripheral blood lymphocytes induced by A23187. Expl Cell Res. 96, 92100.CrossRefGoogle Scholar
Howe, C. W. S. & Metz, C. B. (1972). Multivalent and univalent concanavalin A as probes for studying sperm-egg interaction. Biol. Bull. mar. biol. Lab. Woods Hole 143, 465.Google Scholar
Hultin, T. (1950). On the oxygen uptake of Paracentrotus lividus egg homogenates after the addition of calcium. Expl Cell Res. 1, 272283.CrossRefGoogle Scholar
Hultin, T. (1952). Incorporation of 15N-labelled glycine and alanine into the proteins of developing sea urchin eggs. Expl Cell Res. 3, 494496.CrossRefGoogle Scholar
Humphreys, T. (1969). Efficiency of translation of messenger-RNA before and after fertilization. Devl Biol. 20, 435458.CrossRefGoogle ScholarPubMed
Humphreys, T. (1971). Measurement of messenger RNA entering polysomes upon fertilization of sea urchin eggs. Devl Biol. 26, 201208.CrossRefGoogle ScholarPubMed
Isono, N. (1963). Studies on the glucose-6-phosphate dehydrogenase in sea urchin eggs. J. Fac. Sci. Tokyo Univ. ser. 4 10, 6774.Google Scholar
Isono, N. & Yasumasu, I. (1968). Pathways of carbohydrate breakdown in sea urchin eggs. Expl Cell Res. 50, 616626.CrossRefGoogle ScholarPubMed
Jaffe, L. A. (1976). Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature, Lond. 261, 6871.CrossRefGoogle ScholarPubMed
Jaffe, L. A. (1980). Electrical polyspermy block in sea urchins. Nicotine and low sodium experiments. Develop. Growth & Different. 22, 503507.CrossRefGoogle ScholarPubMed
Jaffe, L. A. & Robinson, K. R. (1978). Membrane potential of the unfertilized sea urchin egg. Devl Biol. 62, 215228.CrossRefGoogle ScholarPubMed
Jaffe, L. A., Hagiwara, S. & Kado, R. (1978). The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Devl Biol. 67, 243248.CrossRefGoogle ScholarPubMed
Jaffe, L. F. (1980). Calcium explosions as triggers of development. Ann. N.Y. Acad. Sci. 339, 86101.CrossRefGoogle ScholarPubMed
Jenkins, N. A., Kaumeyer, J. F., Young, E. F. & Raff, R. A. (1978). A test for masked message: the template activity of messenger ribonucleoprotein particles isolated from sea urchin eggs. Devl Biol. 63, 279298.CrossRefGoogle Scholar
Johnson, C. H. & Epel, D. (1981). Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method. J. Cell Biol. 89, 284291.CrossRefGoogle ScholarPubMed
Johnson, J. D. & Epel, D. (1975). Relationship between release of surface proteins and metabolic activation of sea urchin eggs at fertilization. Proc. natn. Acad. Sci. U.S.A. 72, 44744478.CrossRefGoogle ScholarPubMed
Johnson, J. D., Epel, D. & Paul, M. (1976). Intracellular pH and activation of sea urchin eggs after fertilization. Nature, Lond. 262, 661664.CrossRefGoogle Scholar
Kacser, H. (1955). The cortical changes on fertilization of the sea urchin egg. J. exp. Biol. 32, 451467.CrossRefGoogle Scholar
Kaplan, J. G. & Owens, T. (1980). Activation of lymphocytes of man and mouse: monovalent cation fluxes. Ann. N.Y. Acad. Sci. 339, 191200.CrossRefGoogle ScholarPubMed
Kiehart, D. P., Reynolds, G. T. & Eisen, A. (1977). Calcium transients during the early development of echinoderm and teleost eggs. Princeton University Physics Department Contract, no. EY-76-S-02–3120; Technical Report, no. 22.Google Scholar
Koch, K. S. & Leffert, H. L. (1979). Increased sodium influx is necessary to initiate rat hepatocyte proliferation. Cell 18, 153163.CrossRefGoogle ScholarPubMed
Krahl, M. E. (1956). Oxidative pathway or glucose in eggs of the sea urchin. Biochim. biophys. Acta 20, 2732.CrossRefGoogle ScholarPubMed
Krane, S. M. & Crane, R. K. (1960). Changes in levels of TPN in marine eggs subsequent to fertilization. Biochim. biophys. Acta 43, 369373.CrossRefGoogle Scholar
Lee, S. C. & Steinhardt, R. A. (1981 a). pH changes associated with meiotic maturation of oocytes of Xenopus laevis. Devl Biol. 85, 358369.CrossRefGoogle ScholarPubMed
Lee, S. C. & Steinhardt, R. A. (1981 b). Observations on intracellular pH during cleavage of eggs of Xenopus laevis. J. Cell Biol. 91, 414419.CrossRefGoogle ScholarPubMed
Leffert, H. L. & Koch, K. S. (1980). Ionic events at the membrane initiate rat liver regeneration. Ann. N.Y. Acad. Sci. 339, 201215.CrossRefGoogle ScholarPubMed
Levenson, R., Housman, D. & Cantley, L. (1981). Calcium influx is a signal for commitment of MEL cells to erythroid differentiation. J. Cell Biol. 91, 16a.Google Scholar
Lillie, F. R. (1914). Studies of fertilization. The mechanism of fertilization in Arbacia. J. exp. Zool. 16, 523590.CrossRefGoogle Scholar
Loeb, J. (1913). Artificial parthenogenesis and fertilization. Chicago: University Press.Google Scholar
Longo, F. J. (1978). Effects of cytochalasin B on sperm–egg interactions. Devl. Biol. 67, 249265.CrossRefGoogle ScholarPubMed
Longo, F. J. & Anderson, E. (1970). A cytological study of the relation of the cortical reaction to subsequent events of fertilization in urethane-treated eggs of the sea urchin Arbacia punctulata. J. Cell Biol. 47, 646665.CrossRefGoogle ScholarPubMed
Lopo, A. & Vacquier, V. D. (1977). The rise and fall of intracellular pH following fertilization of sea urchin eggs. Nature, Lond. 269, 590592.CrossRefGoogle Scholar
Lopo, A. C. & Vacquier, V. D. (1980). Antibody to sperm surface glycoprotein inhibits the egg jelly induced acrosome reaction of sea urchin sperm. Devl Biol. 79, 325333.CrossRefGoogle ScholarPubMed
Lucy, J. A. (1975). Aspects of the fusion of cells in vitro without viruses. J. Reprod. Fert. 44, 193205.CrossRefGoogle ScholarPubMed
Lucy, J. A. (1978). Mechanisms of chemically-induced cell fusion. In Membrane Fusion (ed. Poste, G. and Nicholson, G. L.), pp. 267304. New York: North Holland.Google Scholar
Mackenzie, D. O. & Chambers, E. L. (1977). Fertilization in the voltage-clamped sea urchin egg. Clin. Res. 25, 643 a.Google Scholar
Mazia, D. (1937). The release of calcium in Arbacia eggs upon fertilization. J. cell comp. Physiol. 10, 291304.CrossRefGoogle Scholar
Mazia, D. (1961). Mitosis and the physiology of cell division. In The Cell vol. III (ed. Brachet, J. and Mirsky, A. E.), pp. 78412. New York: Academic.Google Scholar
Mazia, D. (1974). Chromosome cycles turned on in unfertilized sea urchin eggs exposed to NH4OH. Proc. natn. Acad. Sci. U.S.A. 71, 690693.CrossRefGoogle ScholarPubMed
Mazia, D. & Ruby, A.DNA synthesis turned on in unfertilized sea urchin eggs by treatment with NH4OH. Expl Cell Res. 85, 167172.CrossRefGoogle Scholar
Mehl, J. W. & Swann, M. M. (1961). Acid and base production at fertilization in the sea urchin. Expl Cell Res. 22, 233245.CrossRefGoogle ScholarPubMed
Metcalfe, J. C., Pozzan, T., Smith, G. A. & Hesketh, T. R. (1980). A calcium hypothesis for the control of cell growth. Biochem Soc. Symp. 45, 126.Google ScholarPubMed
Metz, C. B. (1978). Sperm and egg receptors involved in fertilization. Curr. Topics Devl Biol. 12, 107147.CrossRefGoogle ScholarPubMed
Millonig, G. (1969). Fine structural analysis of the cortical reaction in the sea urchin egg: after normal fertilization and after electrical induction. J. Submicros. Cytol. 1, 6984.Google Scholar
Mitchison, J. M. & Swann, M. M. (1955). The mechanical properties of the cell surface: the sea urchin egg from fertilization to cleavage. J. exp. Biol. 32, 734750.CrossRefGoogle Scholar
Monroy, A. (1965). The Chemistry and Physiology of Fertilization. New York: Holt, Rinehart & Winston.Google Scholar
Moolenaar, W. H., Mummery, C. L. & Van, Der Saag P. T. (1981). Rapid ionic events and the initiation of growth in serum stimulated neuroblastoma cells. Cell 23, 789798.CrossRefGoogle ScholarPubMed
Morgan, R. W. (1975). Some stochastic models to describe the fertilization of an egg. Appi. Statist. 24, 137138.CrossRefGoogle Scholar
Morgan, B. J. T. (1981). Polyspermy: an example of mathematical modelling in biology. Mathemat. Spectrum 13, 8489.Google Scholar
Moser, F. (1939). Studies on the cortical layer response to stimulating agents in the Arbacia egg. I. Response to insemination. J. exp. Zool. 80, 423445.CrossRefGoogle Scholar
Moy, G. W. & Vacquier, V. D. (1979). Immunoperoxidase localisation of bindin during sperm-egg interaction. Curr. Tops Devi Biol. 13, 3144.CrossRefGoogle Scholar
Mullins, L. J. & Requena, J. (1981). The ‘late’ Ca channel in squid axons. J. gen. Physiol. 78, 683700.CrossRefGoogle ScholarPubMed
Nakamura, M. & Yasumasu, I. (1974). Mechanism for increase of intracellular concentration of free calcium in fertilized sea urchin egg. J. gen. Physiol. 63, 374388.CrossRefGoogle ScholarPubMed
Nishioka, D. & Cross, N. (1978). The role of external sodium in sea urchin fertilization. In Cell Reproduction (ed. Dirksen, E. R., Prescott, D. M. and Fox, C. F.), pp. 403413. New York: Academic Press.CrossRefGoogle Scholar
Papahadjopoulos, D. (1978). Calcium-induced changes and fusion in natural and model membranes. In Membrane Fusion (ed. Poste, G. and Nicholson, G. A.), pp. 765790. New York: N. Holland.Google ScholarPubMed
Paul, M. & Epel, D. (1971). Fertilization-associated light-scattering changes in eggs of the sea urchin Strongylocentrotus purpuratus. ExpI Cell Res. 65, 81288.Google ScholarPubMed
Paul, M. & Johnston, R. N. (1978). Uptake of Ca2+ is one of the earliest responses to fertilization in sea urchin eggs. J. exp. Zool. 203, 143149.CrossRefGoogle ScholarPubMed
Perry, G. (1979). Studies on calcium-stimulated oxidations in the sea urchin egg. Ph.D. thesis, University of California, San Diego.Google Scholar
Perry, G. & Epel, D. (1977). Calcium stimulation of a lipoxygenase accounts for the respiratory burst at fertilization of the sea urchin. J. Cell Biol. 75, 40a.Google Scholar
Perry, G. & Epel, D. (1982). Activation of lipoxygenase-like activity at fertilization of the sea urchin egg (Strongylocentrotus purpuratus). (In preparation.)Google Scholar
Poste, G. & Allison, A. C. (1973). Membrane fusion. Biochim. biophys. Acta 300, 421465.CrossRefGoogle ScholarPubMed
Presley, R. & Baker, P. F. (1970). Kinetics of fertilization in the sea urchin: a comparison of methods. J. exp. Biol. 52, 455468.CrossRefGoogle Scholar
Ridgway, E. B., Gilkey, J. C. & Jaffe, L. F. (1977). Free calcium increases explosively in activating Medaka eggs. Proc. natn. Acad. Sci. U.S.A. 74, 623627.CrossRefGoogle ScholarPubMed
Rothschild, , Lord, (1956). Fertilisation. London: Methuen.Google Scholar
Rothschild, , Lord, & Swann, M. M. (1949). The fertilisation reaction in the sea-urchin egg. A propagated response to sperm attachment. J. exp. Biol. 26, 164176.CrossRefGoogle Scholar
Rothschild, , Lord, & Swann, M. M. (1950). The fertilisation reaction of the sea-urchin. The effect of nicotine. J. exp. Biol. 27, 400406.CrossRefGoogle ScholarPubMed
Rothschild, , Lord, & Swann, M. M. (1951). The fertilisation reaction in the sea-urchin. The probability of a successful sperm-egg collision. J. exp. Biol. 28, 403416.CrossRefGoogle Scholar
Rothschild, , Lord, & Swann, M. M. (1952). The fertilisation reaction in the sea-urchin. The block to polyspermy. J. exp. Biol. 29, 469483.CrossRefGoogle Scholar
Rubin, R. P. (1974). Calcium and the Secretory Process. New York: Plenum.CrossRefGoogle Scholar
Schatten, G. (1978). The block to polyspermy in the sea urchin. In Cell Reproduction (ed. Dirksen, E. R., Prescott, D. M. and Fox, C. F.), pp. 391402. New York: Academic Press.CrossRefGoogle Scholar
Schmell, E., Earles, B. J., Breaux, C. & Lennarz, W. J. (1977). Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata. J. Cell Biol. 72, 3546.CrossRefGoogle ScholarPubMed
Schmidt, T. & Epel, D. (1981). Is there a role for the Ca2+ influx at fertilization? J. Cell Biol. 91, 179a.Google Scholar
Schuel, H. (1978). Secretory functions of egg cortical granules in fertilization and development: a critical review. Gamete Res. 1, 299382.CrossRefGoogle Scholar
Schuel, H. & Schuel, R. (1981). A rapid sodium-dependent block to polyspermy in sea urchin eggs. Devi Biol. 87, 249258.CrossRefGoogle ScholarPubMed
Segall, C. & Lennarz, W. J. (1979). Chemical characterisation of the component of the jelly coat from sea-urchin eggs responsible for the induction of the acrosome reaction. DevI Biol. 71, 3348.CrossRefGoogle ScholarPubMed
Segall, C. & Lennarz, W. J. (1981). Jelly coat and induction of the acrosome reaction in Echinoid sperm. Devl Biol. 86, 8793.CrossRefGoogle ScholarPubMed
Setlow, B. & Setlow, P. (1980). Measurements of the pH within dormant and germinated bacterial spores. Proc. natn. Acad. Sci. U.S.A. 77, 24762480.CrossRefGoogle Scholar
Shapiro, B. M., Schackmann, R. W. & Gabel, C. A. (1981). Molecular approaches to the study of fertilization. A. Rev. Biochem. 50, 815843.CrossRefGoogle Scholar
Shen, S. S., Hamamoto, S. T., Bern, H. A. & Steinhardt, R. A. (1978). Alteration of sodium transport in mouse mammary epithelium associated with neoplastic transformation. Cancer Res. 38, 13561361.Google ScholarPubMed
Shen, S. S. & Steinhardt, R. A. (1976). An electrophysiological study of the membrane properties of the immature and mature oocytes of the batstar, Patina miniata. Devl Biol. 48, 148162.CrossRefGoogle Scholar
Shen, S. S. & Steinhardt, R. A. (1978). Direct measurement of the intracellular pH during metabolic derepression of the sea urchin egg. Nature, Lond. 272, 253254.CrossRefGoogle ScholarPubMed
Shen, S. S. & Steinhardt, R. A. (1979). Intracellular pH and the sodium requirement at fertilization. Nature, Lond. 282, 8789.CrossRefGoogle Scholar
Shen, S. S. & Steinhardt, R. A. (1980). Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin egg. Expl Cell Res. 125, 5561.CrossRefGoogle ScholarPubMed
Shimomura, O. & Johnson, F. H. (1970). Calcium binding, quantum yield and emitting molecule in aequorin bioiluminescence. Nature, Lond. 227, 13561357.CrossRefGoogle Scholar
Smith, J. B. & Rosengurt, E. (1978). Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc. natn. Acad. Sci. U.S.A. 75, 55605564.CrossRefGoogle Scholar
Steinhardt, R. A. & Alderton, J. M. (1982). Calmodulin confers calcium sensitivity on secretory exocytosis. Nature, Lond. 295, 154155.CrossRefGoogle ScholarPubMed
Steinhardt, R. A. & Epel, D. (1974). Activation of sea urchin eggs by a calcium ionophore. Proc. natn. Acad. Sci. U.S.A. 71, 19151919.CrossRefGoogle ScholarPubMed
Steinhardt, R. A., Epel, D., Carroll, E. S. & Yanagamachi, R. (1974). Is calcium ionophore a universal activator for unfertilized eggs? Nature, Lond. 252, 4143.CrossRefGoogle Scholar
Steinhardt, R. A., Lundin, L. & Mazia, D. (1971). Bioelectric responses of the echinoderm egg to fertilization. Proc. natn. Acad. Sci. U.S.A. 68, 24262430.CrossRefGoogle ScholarPubMed
Steinhardt, R. A. & Mazia, D. (1973). Development of K+-conductance and membrane potentials in unfertilized eggs after exposure to NH4OH. Nature, Lond. 241, 400401.CrossRefGoogle Scholar
Steinhardt, R. A., Shen, S. S. & Mazia, D. (1972). Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs. ExpI Cell Res. 72, 195203.CrossRefGoogle Scholar
Steinhardt, R. A. & Winkler, M. M. (1980). The ionic hypothesis of cell activation at fertilization. In The Molecular Basis of Immune Cell Function (ed. Kaplan, J. G.). Amsterdam: Elsevier, N. Holland.Google Scholar
Steinhardt, R. A., Zucker, R. & Schatten, G. (1977). Intracellular calcium release at fertilization in the sea urchin egg. Devl Biol. 58, 185196.CrossRefGoogle ScholarPubMed
Stern, S. & Metz, C. B. (1967). Electrophoresis of sperm-absorbed univalent sea urchin fertilizin. Expl Cell Res. 48, 224226.CrossRefGoogle ScholarPubMed
Sugiyama, M. (1951). Re-fertilization of the fertilized eggs of the sea urchin. Biol. Bull. mar. biol. lab. Woods Hole 101, 335344.CrossRefGoogle Scholar
Summers, R. G. & Hylander, B. L. (1975). Species-specificity of acrosome reaction and primary gamete binding in echinoids. Expl Cell Res. 96, 6368.CrossRefGoogle ScholarPubMed
Taglietti, V. (1979). Early electrical responses to fertilization in sea urchin eggs. Expl Cell Res. 120, 448451.CrossRefGoogle ScholarPubMed
Takahashi, I. & Sugiyama, M. (1973). Relation between the acrosome reaction and fertilization in the sea urchin. 1. Fertilization in Ca-free sea water with egg-water-treated spermatozoa. Develop. Growth & Different. 15, 261267.CrossRefGoogle Scholar
Tilney, L. G. & Jaffe, L. A. (1980). Actin, microvilli and the fertilization cone of sea urchin eggs. J. Cell Biol. 87, 771782.CrossRefGoogle ScholarPubMed
Tsien, R. Y., Pozzan, T. & Rink, T. J. (1982). T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature, Lond. 295, 6870.CrossRefGoogle ScholarPubMed
Tupper, J. T., Kaufman, L. & Bodine, P. V. (1980). Related effects of calcium and serum on the G phase of human WI 38 fibroblasts. J. cell Physiol. 104, 97103.CrossRefGoogle Scholar
Tyler, A. (1949). Properties of fertilizin and related substances of eggs and sperm of marine animals. Am. Nat. 83, 195219.CrossRefGoogle Scholar
Tyler, A. (1956). Physicochemical properties of the fertilizins of the sea urchin Arbacia punctulata and the sand dollar Echinarachinus parma. Expl Cell Res. 10, 377386.CrossRefGoogle ScholarPubMed
Tyler, A. & Metz, C. B. (1955). Effects of fertilizin treatment of sperm anti trypsin treatment of eggs on homologous and cross fertilization in the sea urchin. Pubbi. Staz. zool. Napoli 27, 128145.Google Scholar
Tyler, A., Burbank, A. & Tyler, J. S. (1954). The electrophoretic mobilities of the fertilizin of Arbacia and Echinarachinus. Biol. mar. biol. lab. Woods Hole 107, 304.Google Scholar
Vacquier, V. D. (1975). The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Devl Biol. 43, 6274.CrossRefGoogle Scholar
Vacquier, V. D. (1981). Dynamic changes of the egg cortex. Devl Biol. 84, 126.CrossRefGoogle ScholarPubMed
Vacquier, V. D. & Payne, J. E. (1973). Methods for quantitating sea urchin sperm-egg binding. Expl Cell Res. 82, 227235.CrossRefGoogle ScholarPubMed
Vacquier, V. D. & Brandriff, B. (1975). DNA synthesis in unfertilized sea urchin eggs can be turned on and off by the addition and removal of procaine. Devl Biol. 47, 1231.CrossRefGoogle ScholarPubMed
Vacquier, V. D. & Moy, G. W. (1977). Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc. natn. Acad. Sci. U.S.A. 74, 24562460.CrossRefGoogle ScholarPubMed
Vacquier, V. D. & Moy, G. W. (1978). Macromolecules mediating sperm-egg recognition and adhesion during sea urchin egg fertilization. In Cell Reproduction (ed. Dirksen, E. R., Prescott, D. M. and Fox, C. F.). New York: Academic Press.Google Scholar
Vacquier, V. D., Tegner, M. J. & Epel, D. (1973). Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Expl Cell Res. 80, 111119.CrossRefGoogle ScholarPubMed
Van der Saag, P. T., Feyen, A., Miltenburg-Vonk, W. & de Laat, S. W. (1981). Plasma membrane-mediated effects of extracellular pH on the growth of neuroblastoma cells. Expl Cell Res. 136, 351358.CrossRefGoogle ScholarPubMed
Veron, M. & Shapiro, B. M. (1977). Binding of concanavalin A to the surface of sea urchin eggs and its alteration upon fertilization. J. biol. Chem. 252, 12861292.CrossRefGoogle Scholar
Veron, M., Foerder, C., Eddy, E. M. & Shapiro, B. M. (1977). Sequential biochemical and morphological events during assembly of the fertilization membrane of the sea urchin. Cell 10, 321328.CrossRefGoogle ScholarPubMed
Warburg, O. (1910). Über die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Hoppe-Seyler's Z. physiol. Chem. 66, 305340.CrossRefGoogle Scholar
Webb, D. J. & Nucitelli, R. (1981). Direct measurement of intracellular pH in Xenopus eggs at fertilization and cleavage. J. Cell Biol. 91, 562567.CrossRefGoogle ScholarPubMed
Weller, M. (1979). Protein Phosphorylation, pp. 163179. London: Pion.Google ScholarPubMed
Whitaker, M. J. & Steinhardt, R. A. (1981). The relation between the increase in reduced nicotinamide nucleotides and the initiation and maintenance of DNA synthesis in the egg of the sea urchin Lytechinus pictus. Cell 25, 95103.CrossRefGoogle Scholar
White, J. & Helenius, A. (1980). pH-dependent fusion between the semliki forest virus membrane and liposomes. Proc. natn. Acad. Sci. U.S.A. 77, 32733277.CrossRefGoogle ScholarPubMed
Whitfield, J. F., Boynton, A. L., MacManus, R. H., Rixon, R. H., Sikorska, M., Tsang, B. & Walker, P. R. (1980). The role of calcium and cyclic AMP in cell proliferation. Ann. N. Y. Acad. Sci. 339, 216240.CrossRefGoogle Scholar
Wilson, E. B. (1928). The cell in development and heredity. New York: Macmillan.Google Scholar
Winkler, M. M. & Grainger, J. L. (1978). Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs. Nature, Lond. 273, 236238.CrossRefGoogle ScholarPubMed
Winkler, M. M. & Steinhardt, R. A. (1981). Activation of protein synthesis in a sea urchin cell-free system. Devl Biol. 84, 432439.CrossRefGoogle Scholar
Winkler, M. M., Steinhardt, R. A., Grainger, J. L. & Minning, L. (1980). Dual ionic controls for the activation of protein synthesis at fertilization. Nature, Lond. 287, 558560.CrossRefGoogle ScholarPubMed
Yoneda, M., Ikeda, M. & Washitani, S. (1978). Periodic change in the tension at the surface of activated non-nucleate fragments of sea urchin eggs. Develop. Growth & Different. 20, 329336.CrossRefGoogle ScholarPubMed
Zucker, R. S. & Steinhardt, R. A. (1978). Prevention of the cortical reaction in fertilized sea urchin eggs by injection of calcium-chelating ligands. Biochim. biophys. Acta 541, 459466.CrossRefGoogle ScholarPubMed
Zucker, R. S. & Steinhardt, R. A. (1979). Calcium activation of the cortical reaction in sea urchin eggs. matters arising, Nature, Lond. 279, 820.Google ScholarPubMed
Zucker, R. S., Steinhardt, R. A. & Winkler, M. M. (1978). Intracellular calcium and the mechanisms of parthenogenetic activation of sea urchin eggs. Devl Biol. 65, 285295.CrossRefGoogle Scholar