Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T13:23:01.616Z Has data issue: false hasContentIssue false

Cytochrome c oxidase: some current biochemical and biophysical problems

Published online by Cambridge University Press:  17 March 2009

Bo G. Malmström
Affiliation:
Department of Biochemistry, University of California, Berkeley, California 94720, U.S.A.

Extract

Few fields of biochemistry have seen such widespread applications of physical theories and techniques as that of biological oxidation. There are obvious reasons for this. Oxidation-reduction reactions form the foundations of bioenergetics, an area which can only be understood in terms of thermodynamic theory. Most components of the mitochondrial respiratory chain contain transition metals, and these elements and their chemical environment can often be studied by modern spectroscopic methods, such as electron-paramagnetic resonance (EPR). The relation between spectroscopic properties and chemical structure of metallo-proteins, e.g. haem proteins, represents one of the few branches of present-day biochemistry to which quantum mechanical calculations can profitably be applied (see, for example, Zerner, Gouterman & Kobayashi, 1966).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andréasson, L.-E., Brändén, R., Malmstroöm, B. G. & Vänngård, T. (1973). An intermediate in the reaction of reduced laccase with oxygen. FEBS Lett. 32, 187–9.CrossRefGoogle ScholarPubMed
Andréasson, L.-E., Malmström, B. G., Strömberg, C. & Vänngård, T. (1972). The reaction of ferrocytochrome c with cytochrome oxidase: a new look. FEBS Lett. 28, 297301.Google Scholar
Andréasson, L.-E., Malmström, B. G., Strömberg, C. & Vänngärd, T. (1973). The kinetics of the anaerobic reduction of fungal laccase B. Eur. J. Biochem. 34, 434–9.CrossRefGoogle ScholarPubMed
Antonini, E., Brunori, M., Greenwood, C. & Malmström, B. G. (1970). Mechanism of cytochrome oxidase. Nature, Lond. 228, 936–7.Google Scholar
Barlow, C. H., Maxwell, J. C., Wallace, W. J. & Caughey, W. S. (1973). Elucidation of the mode of binding of oxygen to iron in oxyhemoglobin by infrared spectroscopy. Biochem. biophys. Res. Commun. 55, 91–5.CrossRefGoogle Scholar
Beinert, H., Griffiths, D. E., Wharton, D. C. & Sands, R. H. (1962). Properties of the copper associated with cytochrome oxidase as studied by paramagnetic resonance spectroscopy. J. biol. Chem. 237, 2337–46.CrossRefGoogle ScholarPubMed
Beinert, H., Hartzell, C. R. & Orme-Johnson, W. H. (1971). Some problems of oxidation-reduction of cytochrome c oxidase and the nature of its ‘oxygenated’ form. In Probes of Structure and Function of Macromolecules and Membranes, vol. 2 (ed. Chance, B., Yonetani, T. and Mildvan, A. S., pp. 575592). New York: Academic Press.Google Scholar
Beinert, H. & Palmer, G. (1965). Contributions of EPR spectroscopy to our knowledge of oxidative enzymes. Adv. Enzymol. 27, 105–98.Google ScholarPubMed
Bennet, L. E. (1973). Metalloprotein redox reactions. In Current Research Topics in Bioinorganic Chemistry (ed. Lippard, S.J.), pp. 1176. New York: John Wiley.Google Scholar
Chance, B. (1951). Enzyme-substrate compounds. Adv. Enzymol. 12, 153–90.Google ScholarPubMed
Chang, C. K. & Traylor, T. G. (1973). Synthesis of the myoglobin active site. Proc. natn. Acad. Sci., U.S.A. 70, 2647–50.Google Scholar
Czapski, G. & Bielski, B. H. J. (1963). The formation and decay of H2O3 and HO2 in electron-irradiated aqueous solutions. J. Phys. Chem. Ithaca 67, 2180–4.CrossRefGoogle Scholar
Ehrenberg, A. & Yonetani, T. (1961). Magnetic properties of iron and copper in cytochrome oxidase. Acta chem. scand. 15, 1071–80.Google Scholar
Erecińska, M. & Chance, B. (1972). Studies on the electron transport chain at subzero temperatures: electron transport at site III. Archs. Biochem. Biophys. 151, 304–15.CrossRefGoogle Scholar
Fowler, L. R., Richardson, S. W. & Hatefi, Y. (1962). A rapid method for the preparation of highly purified cytochrome oxidase. Biochim. biophys. Acta 64, 170–3.CrossRefGoogle ScholarPubMed
Fridovich, I. (1972). Superoxide radical and superoxide dismutase. Acc. Chem. Res. 5, 321–6.Google Scholar
George, P. (1965). The fitness of oxygen. In Oxidases and Related Redox Systems (ed. King, T. E., Mason, H. S. and Morrison, M.), pp. 333. New York: John Wiley.Google Scholar
George, P. & Griffith, J. S. (1959). Electron transfer and enzyme catalysis. In The Enzymes, vol. 1 (ed. Boyer, P. D., Lardy, H. and Myrbäck, K.), pp. 347–89. New York: Academic Press.Google Scholar
Gibson, Q. H., Greenwood, C., Wharton, D. C. & Palmer, G. (1965). The reaction of cytochrome oxidase with cytochrome c. J. biol. Chem. 240, 888–94.CrossRefGoogle ScholarPubMed
Greenwood, C., Wilson, M. T. & Brunori, M. (1974). Studies on partially reduced mammalian cytochrome oxidase: reactions with carbon monoxide and oxygen. Biochem. J. (in the Press)CrossRefGoogle Scholar
Griffith, J. S. (1971). Coupled cupric and ferric ions in cytochrome oxidase. Molec. Phys. 21, 141–4.CrossRefGoogle Scholar
Hamilton, G. A. (1973). Chemical models and mechanisms for oxygenases. In Molecular Mechanisms of Oxygen Activation (ed. Hayaishi, O.), pp. 405–51. New York: Academic Press.Google Scholar
Hardman, K. D., Eylar, E. H., Ray, D. K., Banaszak, L. J. & Gurd, F. R. N. (1966). Isolation of sperm whale myoglobin by low temperature fractionation with ethanol and metallic ions. J. biol. Chem. 241, 432–42.CrossRefGoogle ScholarPubMed
Harris, Loew G. M. (1970). An analysis of the electron spin resonance of low spin ferric heme compounds. Biophys. J. 10, 196212.Google Scholar
Hartzell, C. R., Hansen, R. E. & Beinert, H. (1973). Electron carriers of cytochrome oxidase detectable by electron paramagnetic resonance and their relationship to those traditionally recognized in this enzyme. Proc. natn. Acad. Sci., U.S.A. 70, 2477–81.CrossRefGoogle ScholarPubMed
Heineman, W. R., Kuwana, T. & Harzell, C. R. (1972). Indirect electrochemical titration of beef heart cytochrome c oxidase. Biochem. biophys. Res. Commun. 49, 18.Google Scholar
Heineman, W. R., Kuwana, T. & Hartzell, C. R. (1973). Charge distribution in electron transport components: cytochrome c and cytochrome c oxidase mixtures. Biochem. biophys. Res. Commun. 50, 892900.CrossRefGoogle ScholarPubMed
Keilin, D. (1966). The history of Cell Respiration and Cytochrome. Cambridge University Press.Google Scholar
Keilin, D. & Hartree, E. F. (1939). Cytochrome and cytochrome oxidase. Proc. R. Soc. Lond. B 127, 167–91.Google Scholar
Koshland, D. E. Jr (1970). The molecular basis for enzyme regulation. In The Enzymes, vol. 1 (ed. Boyer, P. D.), pp. 341–96. New York: Academic Press.Google Scholar
Kuboyama, M., Yong, F. C. & King, T. E. (1972). Studies on cytochrome oxidase. VIII. Preparation and some properties of cardiac cytochrome oxidase. J. biol. Chem. 247, 6375–83.CrossRefGoogle Scholar
Lang, G., Lippard, S. J. & Rosén, S. (1973). Mössbauer spectroscopy studies of beef-heart cytochrome c oxidase. Biochim. biophys. Acta 336, 614.CrossRefGoogle Scholar
Leigh, J. S. Jr, Wilson, D. F., Owen, C. S. & King, T. E. (1974). Heme–heme interaction in cytochrome c oxidase: the cooperativity of the hemes in cytochrome c oxidase as evidenced in the reaction with CO. Archs. Biochem. Biophys. 160, 476–86.Google Scholar
Lemberg, M. R. (1969). Cytochrome oxidase. Physiol. Rev. 49, 48121.Google Scholar
Malkin, R. & Malmström, B. G. (1970). The state and function of copper in biological systems. Adv. Enzymol. 33, 177244.Google ScholarPubMed
Malmström, B. G. & Vänngård, T. (1960). Electron spin resonance of copper proteins and some model complexes. J. molec. Biol. 2, 118–24.CrossRefGoogle Scholar
Margoliash, E. & Frohwirth, N. (1959). Spectrum of horse-heart cytochrome c. Biochem. J. 71, 570–2.Google Scholar
Minnaert, K. (1965). Measurement of the equilibrium constants of the reaction between cytochrome c and cytochrome a. Biochim. biophys. Acta 110, 4256.CrossRefGoogle ScholarPubMed
Muijsers, A. O., Tiesjema, R. H. & Van, Gelder B. F. (1971). Biochemical and biophysical studies on cytochrome aa 3. II. Conformations of oxidized cytochrome aa 3. Biochim. biophys. Acta 234, 481–92.Google Scholar
Muijsers, A. O., Tiesjema, R. H., Henderson, R. W. & Van, Gelder B. F. (1972). Biochemical and biophysical studies on cytochrome aa 3. VII. The effects of cytochrome c on the oxidation reduction potential of isolated cytochrome aa 3. Biochim. biophys. Acta 267, 216–21.CrossRefGoogle Scholar
Myer, Y. P. (1971). Conformation of cytochromes. V. Cytochrome c oxidase. J. biol. Chem. 246, 1241–8.Google Scholar
Myer, Y. P. (1972). The ‘oxygenated complex’ of cytochrome c oxidase. Biochem. biophys. Res. Commun. 49, 1194–200.CrossRefGoogle ScholarPubMed
Nicholls, P. (1968). Cytochrome oxidase as an allosteric enzyme. In Structure and Function of cytochromes (ed. Okunuki, K., Kamen, M. D. and Sekuzu, I.), pp. 7686. Baltimore: University Park Press.Google Scholar
Nicholls, P., Erecińska, M. & Wolson, D. F. (1973). Low spin ferricytochrome a 3: high energy state or intrinsic probe? In Mechanisms in Bioenergetics, pp. 561570. New York: Academic Press.Google Scholar
Nicholls, P. & Kimelberg, H. K. (1972). Cytochrome oxidase in the mitochondrial membrane. In Biochemistry and Biophysics of the Mitochondrial Membrane (ed. Azzone, G. F., Carafoli, E., Lehninger, A. L., Quagliariello, E. and Siliprandi, N.), pp. 1732. New York: Academic Press.Google Scholar
Okunuki, K., Sekuzu, I., Yonetani, T. & Takemori, S. (1958). Studies on cytochrome a. I. Extraction, purification and some properties of cytochrome a. J. Biochem. (Tokyo) 45, 847854.CrossRefGoogle Scholar
Orii, Y. & King, T. E. (1972). New species of the ‘oxygenated compound’ of cytochrome oxidase. FEBS Lett. 21, 199202.CrossRefGoogle ScholarPubMed
Orme-Johnson, N. R., Orme-Johnson, W. H., Hansen, R. E., Beinert, H. & Hatefi, Y. (1973). EPR detectable electron acceptors in submitochondrial particles from beef heart. In Oxidases and Related Redox Systems (Proc. 2nd Int. Symp.) (ed. King, T. E., Mason, H. S. and Morrison, M.), pp. 769781. Baltimore: University Park Press.Google Scholar
Packer, E. L. (1973). The use of aromatic residues to probe the iron-sulfur clusters of Clostridium acidi-urici and Clostridium pasteurianum ferredoxins, pp. 294315. Ph.D. Thesis, Berkeley: the University of California.Google Scholar
Peisach, J., Blumberg, W. E., Wittenberg, B. A. & Wittenberg, J. B. (1968). The electronic structure of protoheme proteins. III. Configuration of the heme and its ligands. J. biol. Chem. 243, 1871–80.Google Scholar
Rao, P. S. & Hayon, E. (1973). Experimental determination of the redox potential of the superoxide radical O2. Biochem. biophys. Res. Commun. 51, 468–73.Google Scholar
Rubin, M. S. & Tzagoloff, A. (1973). Assembly of the mitochondrial membrane system. IX. Purification, characterization, and subunit structure of yeast and beef cytochrome oxidase. J. biol. Chem. 248, 4269–74.Google Scholar
Salmeen, I., Rimai, L., Gill, D., Yamamoto, T., Palmer, G., Hartzell, G. R. & Beinert, H. (1973). Resonance Raman spectroscopy of cytochrome c oxidase and electron transport particles with excitation near the Soret band. Biochem. biophys. Res. Commun. 52, 1100–7.CrossRefGoogle ScholarPubMed
Sekuzu, I. & Takemori, S. (1972). Cytochrome oxidase group (reactive with oxygen). In Electron and Coupled Energy Transfer in Biological Systems (ed. King, T. E. and Klingenberg, M.), pp. 325–73. New York: Marcel Dekker.Google Scholar
Sutin, N. (1973). Oxidation-reduction in coordination compounds. In Inorganic Biochemistry, vol. 2 (ed. Eichborn, G. L.), pp. 61–53. Amsterdam: Elsevier.Google Scholar
Taube, H. (1965). Mechanisms of oxidation with oxygen. J. gen. Physiol. 49, 2950.CrossRefGoogle ScholarPubMed
Tiesjema, R. H., Muijsers, A. O. & Van Gelder, B. F. (1972). Biochemical and biophysical studies on cytochrome aa 3. IV. Some properties of oxygenated cytochrome aa 3. Biochim. biophys. Acta 256, 3242.CrossRefGoogle Scholar
Tiesjema, R. H., Muijsers, A. O. & Van Gelder, B. F. (1973). Biochemical and biophysical studies on cytochrome c oxidase. X. Spectral and potentiometric properties of the hemes and coppers. Biochim. biophys. Acta 305, 1928.Google Scholar
Tsudzuki, T. & Wilson, D. F. (1971). The oxidation-reduction potentials of the hemes and copper of cytochrome oxidase from beef heart. Archs. Biochem. Biophys. 145, 149–54.Google Scholar
Van Gelder, B. F. (1966). Extinction coefficients of cytochrome a and cytochrome a 3. Biochim. biophys. Acta 118, 3646.CrossRefGoogle ScholarPubMed
Van Gelder, , & Beinert, H. (1969). Studies of the heme components of cytochrome c oxidase by EPR spectroscopy. Biochim. biophys. Acta 189, 124.CrossRefGoogle ScholarPubMed
Vänngård, T. (1972). Copper proteins. In Biological Applications of EPR (ed. Swartz, H. M., Bolton, J. and Borg, D.), pp. 411–47. New York: John Wiley.Google Scholar
Wever, R., Oudega, B. & Van, Gelder B. F. (1973). Generation of superoxide radicals during the autoxidation of mammalian oxyhemoglobin. Biochim. biophys. Acta 302, 475–8.Google Scholar
Wharton, D. C. & Cusanovich, M. A. (1969). The oxidation-reduction potential of copper in cytochrome oxidase. Biochem. biophys. Res. Commun. 37, 111–15.Google Scholar
Williams, G. R., Lemberg, R. & Cutler, M. E. (1968). The oxidized forms of cytochrome oxidase. Can. J. Biochem. Physiol. 46, 1371–9.Google ScholarPubMed
Wilson, D. F. & Leigh, J. S. Jr (1972). Heme—heme interaction in cytochrome c oxidase in situ as measured by EPR spectroscopy. Archs Biochem. Biophys. 150, 154–63.CrossRefGoogle ScholarPubMed
Wilson, D. F., Lindsay, J. G. & Brocklehurst, E. S. (1972). Heme— heme interation in cytochrome oxidase. Biochim. biophys. Acta 256, 277–86.CrossRefGoogle Scholar
Wilson, M. T., Greenwood, C., Brunori, M. & Antonini, E. (1974). Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c. Commun. Enz. Mech. (in the Press.)Google Scholar
Wyman, J. (1948). Heme proteins. Adv. Prot. Chem. 4, 410531.Google ScholarPubMed
Yamamoto, T., Palmer, G., Gill, D., Salmeen, I. T. & Rimai, L. (1973). The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy. J. biol. Chem. 248, 5211–13.Google Scholar
Yonetani, T. (1960). Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J. biol. Chem. 235, 845–52.Google Scholar
Yong, F. C. & King, T. E. (1970). The interactions of copper and a 3 in cytochrome oxidase. Biochem. biophys. Res. Commun. 38, 940–6.Google Scholar
Yong, F. C. & King, T. E. (1972 a). Respiratory control and oxidative phosphorylation of the cytochrome c-cytochrome oxidase complex. Biochem. biophys. Res. Commun. 47, 380–6.CrossRefGoogle ScholarPubMed
Yong, F. C. & King, T. E. (1972 b). Studies on cytochrome oxidase IX. Heme—copper interaction. J. biol. Chem. 247, 6384–8.Google Scholar
Zerner, M., Gouterman, M. & Kobayashi, H. (1966). Porphyrins. VIII. Extended Hückel calculations on iron complexes. Theoret. Chim. Acta 6, 363400.Google Scholar