Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T13:12:03.611Z Has data issue: false hasContentIssue false

Advances in superresolution optical fluctuation imaging (SOFI)

Published online by Cambridge University Press:  14 May 2013

Thomas Dertinger*
Affiliation:
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
Alessia Pallaoro
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
Gary Braun
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
Sonny Ly
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Ted A. Laurence
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Shimon Weiss*
Affiliation:
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA Department of Physiology University of California Los Angeles, UCLA, Los Angeles, USA California NanoSystems Institute University of California Los Angeles, UCLA, Los Angeles, USA
*
*Authors for Correspondence: Shimon Weiss, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA. Email: [email protected] and Thomas Dertinger, Dresdener Str. 14, 10999 Berlin, Germany. Email: [email protected]
*Authors for Correspondence: Shimon Weiss, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA. Email: [email protected] and Thomas Dertinger, Dresdener Str. 14, 10999 Berlin, Germany. Email: [email protected]

Abstract

We review the concept of superresolution optical fluctuation imaging (SOFI), discuss its attributes and trade-offs (in comparison with other superresolution methods), and present superresolved images taken on samples stained with quantum dots, organic dyes, and plasmonic metal nanoparticles. We also discuss the prospects of SOFI for live cell superresolution imaging and for imaging with other (non-fluorescent) contrasts.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. (1873). Contributions to the theory of the microscope and the microscopic perception (Translated from German). Archiv für Mikroskopische Anatomie 9, 413468.CrossRefGoogle Scholar
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott-Schwartz, J. & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 16421645.CrossRefGoogle ScholarPubMed
Biteen, J. S., Thompson, M. A., Tselentis, N. K., Bowman, G. R., Shapiro, L. & Moerner, W. E. (2008). Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nature Methods 5, 947949.CrossRefGoogle ScholarPubMed
Braun, G. B., Lee, S. J., Laurence, T., Fera, N., Fabris, L., Bazan, G. C., Moskovits, M. & Reich, N. O. (2009). Generalized approach to SERS-active nanomaterials via controlled nanoparticle linking, polymer encapsulation, and small-molecule infusion. Journal of Physical Chemistry C 113, 1362213629.CrossRefGoogle Scholar
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America 106, 2228722292.CrossRefGoogle ScholarPubMed
Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. (2010a). Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Optics Express 18, 18875.CrossRefGoogle ScholarPubMed
Dertinger, T., Heilemann, M., Vogel, R., Sauer, M. & Weiss, S. (2010b). Superresolution optical fluctuation imaging with organic dyes. Angewandte Chemie (International Edition in English) 49, 94419443.CrossRefGoogle ScholarPubMed
Dertinger, T., Xu, J., Foroutan, N. O., Vogel, R. & Weiss, S. (2012). SOFI-based 3D superresolution sectioning with a widefield microscope. Optical Nanoscopy 1, 2.CrossRefGoogle ScholarPubMed
Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., Jakobs, S., Eggeling, C. & Hell, S. W. (2008). Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods 5, 943945.CrossRefGoogle ScholarPubMed
Geissbuehler, S., Dellagiacoma, C. & Lasser, T. (2011). Comparison between SOFI and STORM. Biomedical Optics Express 2, 408420.CrossRefGoogle ScholarPubMed
Geissbuehler, S., Bocchio, N. L., Dellagiacoma, C., Berclaz, C., Leutenegger, M. & Lasser, T. (2012). Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Optical Nanoscopy 1, 4.CrossRefGoogle Scholar
Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 8287.CrossRefGoogle ScholarPubMed
Heilemann, M., van De Linde, S., Mukherjee, A. & Sauer, M. (2009). Super-resolution imaging with small organic fluorophores. Angewandte Chemie (International Edition in English) 48, 69036908.CrossRefGoogle ScholarPubMed
Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., Tinnefeld, P. & Sauer, M. (2008). Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie (International Edition in English) 47, 61726176.CrossRefGoogle ScholarPubMed
Hell, S. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters 19, 780782.CrossRefGoogle ScholarPubMed
Hotta, J. I., Fron, E., Dedecker, P., Janssen, K. P. F., Li, C., Mullen, K., Harke, B., Buckers, J., Hell, S. W. & Hofkens, J. (2010) Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores. Journal of the American Chemical Society 132, 50215023.CrossRefGoogle ScholarPubMed
Ji, N., Milkie, D. E. & Betzig, E. (2010). Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141147.CrossRefGoogle ScholarPubMed
Jiang, J., Bosnick, K., Maillard, M. & Brus, L. (2003). Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Journal of Physical Chemistry B 107, 99649972.CrossRefGoogle Scholar
Jones, S. A., Shim, S. -H., He, J. & Zhuang, X. (2011). Fast, three-dimensional super-resolution imaging of live cells. Nature Methods.Google ScholarPubMed
Kanchanawong, P., Shtengel, G., Pasapera, A. M., Ramko, E. B., Davidson, M. W., Hess, H. F. & Waterman, C. M. (2010). Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580584.CrossRefGoogle ScholarPubMed
Klar, T. A. (2000). Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences of the United States of America 97, 82068210.CrossRefGoogle ScholarPubMed
Klar, T. A. & Hell, S. (1999). Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters 24, 954956.CrossRefGoogle ScholarPubMed
Klein, T., Löschberger, A., Proppert, S., Wolter, S., van de Linde, S. & Sauer, M. (2011). Live-cell dSTORM with SNAP-tag fusion proteins. Nature Methods 8, 79.CrossRefGoogle ScholarPubMed
Laurence, T. A., Braun, G. B., Reich, N. O. & Moskovits, M. (2012). Robust SERS enhancement factor statistics using rotational correlation spectroscopy. Nano Letters 12(6), 29122917.CrossRefGoogle ScholarPubMed
Laurence, T. A., Braun, G., Talley, C., Schwartzberg, A., Moskovits, M., Reich, N. & Huser, T. (2009). Rapid, solution-based characterization of optimized SERS nanoparticle substrates. Journal of the American Chemical Society 131, 162169.CrossRefGoogle ScholarPubMed
Lee, H. L., Lord, S. J., Iwanaga, S., Zhan, K., Xie, H., Williams, J. C., Wang, H., Bowman, G. R., Goley, E. D., Shapiro, L., Twieg, R. J., Rao, J. & Moerner, W. E. et al. (2010). Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. Journal of the American Chemical Society 132, 1509915101.CrossRefGoogle ScholarPubMed
Lee, P. C. & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. Journal of Physical Chemistry 86, 33913395.CrossRefGoogle Scholar
Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal-processing and system-theory – theoretical results and some applications. Proceedings of the IEEE 79, 278305.CrossRefGoogle Scholar
Nie, S. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 11021106.CrossRefGoogle ScholarPubMed
Pallaoro, A., Braun, G. B. & Moskovits, M. (2011). Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proceedings of the National Academy of Sciences of the United States of America 108, 1655916564.CrossRefGoogle ScholarPubMed
Pallaoro, A., Braun, G. B., Reich, N. O. & Moskovits, M. (2010). Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6, 618622.CrossRefGoogle ScholarPubMed
Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith, C. G. & Betzig, E. (2011). Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nature Methods 8, 417423.CrossRefGoogle ScholarPubMed
Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. (2009). STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics 3, 144147.CrossRefGoogle Scholar
Rust, M. J., Bates, M. & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793795.CrossRefGoogle ScholarPubMed
Schwartz, O. & Oron, D. (2012). Fluorescence antibunching microscopy. Proc. of SPIE 8228, 822802–4.Google Scholar
van de Linde, S., Wolter, S., Heilemann, M. & Sauer, M. (2010). The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. Journal of Biotechnology 149, 6.CrossRefGoogle ScholarPubMed
Weiss, S. (2000). Shattering the diffraction limit of light: a revolution in fluorescence microscopy? Proceedings of the National Academy of Sciences of the United States of America 97, 87478749.CrossRefGoogle Scholar
Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R.& Hell, S. W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246249.CrossRefGoogle ScholarPubMed
Wolter, S., Endesfelder, U., van de Linde, S., Heilemann, M. & Sauer, M. (2011). Measuring localization performance of super-resolution algorithms on very active samples. Optics Express 19, 70207033.CrossRefGoogle ScholarPubMed
Wombacher, R., Heidbreder, M., van de Linde, S., Sheetz, M. P., Heilemann, M., Cornish, V. W. & Sauer, M. (2010). Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods 7, 717719.CrossRefGoogle ScholarPubMed