Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T05:57:45.616Z Has data issue: false hasContentIssue false

Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity

Published online by Cambridge University Press:  17 March 2009

M. Thomas Record Jr
Affiliation:
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
Charles F. Anderson
Affiliation:
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
Timothy M. Lohman
Affiliation:
Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Extract

The purpose of this review is to examine the various effects of low- molecular-weight electrolytes on the associations and interactions of proteins and nucleic acids. Our primary interest is in general electrostatic effects, rather than chemical effects (specific interactions) of particular ions (e.g. transition metals, protons). We consider those interactions in which a variation in salt concentration has a significant effect on the macromolecular equilibrium, and analyse the effects of salt in these situations in terms of (i) direct participation of ions in the biopolymer reaction, (ii) Debye—Hückel screening by salt ions of the charge interactions on the biopolymers, and (iii) the reduction in water activity brought about at high salt concentrations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, C. F.Record, M. T. Jr & Hart, P. A. (1978). Sodium-23 NMR studies of cation—DNA interactions. Biophysical Chem. 7, 301316.CrossRefGoogle ScholarPubMed
Antonini, E. & Brunori, M. (1971). Hemoglobin and Myoglobin in Their Reactions with Ligands. Amsterdam: North Holland.Google Scholar
Aune, K. C. & Tanford, C. (1969 a). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Dependence on pH at 25°. Biochemistory, N.Y. 8, 45794585.CrossRefGoogle Scholar
Aune, K. C. & Tanford, C. (1969 b). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25°. Biochemistory, N.Y. 8, 45864590.CrossRefGoogle ScholarPubMed
Aune, K. C.Goldsmith, L. C. & Timasheff, S. N. (1971). Dimerization of α-chymotrypsin. II. Ionic strength and temperature dependence. Biochemistory, N.Y. 10, 16171622.Google ScholarPubMed
Aune, K. C. & Timasheff, S. N. (1971). Dimerization of α-chymotrypsin. I. pH dependence in the acid region. Biochemistory, N.Y. 10, 16091617.Google ScholarPubMed
Benesch, R. E.Benesch, R. & Yu, C. I. (1969). The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength and hemoglobin concentration. Biochemistory, N.Y. 8, 25672571.CrossRefGoogle ScholarPubMed
Berg, D. & Chamberlin, M. (1970). Physical studies on RNA polymerase from E. coil B. Biochemistry, N.Y. 9, 50555064.Google Scholar
Bloomfield, V. A.Crothers, D. M. & Tinoco, I. (1974). Physical Chemistry of Nucleic Acids. New York: Harper and Row.Google Scholar
Bradbury, E. M.Cary, P. D.Crave-Robinson, D.Rattle, H. W. E. & Boublik, M. (1975). Conformations and interactions of histone H2A (F2A2, ALK). Biochemistory, N.Y. 14, 18761885.CrossRefGoogle ScholarPubMed
Bradley, D. F. & Lifson, S. (1968). Statistical mechanical analysis of binding of acridines to DNA. In Molecular Associations in Biology (ed. Pullman, B.), pp. 261270. New York: Academic Press.CrossRefGoogle Scholar
Breslauer, K. J.Sturtevant, J. M. & Tinoco, I. Jr, (1975). Calorimetric and spectroscopic investigation of the helix-to-coil transition of a ribooligonucleotide: rA7U7. J. molec. Biol. 99, 549565.CrossRefGoogle ScholarPubMed
Brun, F.Toulmé, J. & Héléne, C. (1975). Interactions of aromatic residues of proteins with nucleic acids. Fluorescence studies of the binding of oligopeptides containing tryptophan and tyrosine residues to polynucleotides. Biochemistory, N.Y. 14, 558563.CrossRefGoogle ScholarPubMed
Carr, C. W. (1955). Determination of ionic activity in protein solutions with collodion membrane electrodes. In Electrochemistry in Biology and Medicine (ed. Shedlovsky, T.), 266283. New York: Wiley.Google Scholar
Chiancone, E.Norne, J. E.Forsén, S.Antonini, E. & Wyman, J. (1975). Nuclear magnetic resonance quadrupole relaxation studies of chloride binding to human oxy- and deoxyhemoglobin. J. molec. Biol. 70, 675688.CrossRefGoogle Scholar
Chiancone, E.Norne, J. E.Forsén, S.Bonaventura, J.Brunori, M.Antonini, E. & Wyman, J. (1975). Identification of chloride-binding sites in hemoglobin by nuclear-magnetic-resonance quadrupole relaxation studies of hemoglobin digests. Eur. J. Biochem. 55, 385390.CrossRefGoogle ScholarPubMed
Chiancone, E.Norne, J. E.Forsén, S.Mansouri, A. & Winterhalter, K. H. (1976). Anion binding to proteins. NMR quadrupole relaxation study of chloride binding to various human hemoglobins. FEBS Lett. 63, 309312.CrossRefGoogle ScholarPubMed
Crothers, D. M. (1971). Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria. Biopolymers 10, 21472160.CrossRefGoogle ScholarPubMed
D'Anna, J. A. & Isenberg, I. (1974). Conformational changes of histone LAK (f2a2). Biochemistry, N.Y. 20932098.Google Scholar
Daune, M. P. (1972). Interactions protéines-acides nucléiques. i. Étude theorique de l'association. Eur. J. Biochem. 26, 207211.CrossRefGoogle Scholar
Davidson, S. J. & Jencks, W. P. (1969). The effect of concentrated salt solutions on a merocyanine dye, a vinglogous amide. J. Am. chem. Soc. 91, 225234.CrossRefGoogle Scholar
DeHaseth, P. L.Lohman, T. M. & Record, M. T. Jr, (1977). Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release. Biochemistory, N.Y. 16, 47834790.CrossRefGoogle ScholarPubMed
DeHaseth, P. L.Lohman, T. M., Burgess, R. R. & Record, M. T. Jr, (1978). Interactions of E. coli RNA polymerase with native and denatured DNA: Differences in the binding behavior of core and holoenzyme. Biochemistory, N.Y. 17, 16121622.CrossRefGoogle ScholarPubMed
Draper, D. E. & Von, Hippel P. H. (1978 a). Nucleic acid binding properties of E. coli ribosomal protein Si. I. Structure and interactions of binding site I. J. molec. Biol. (In the Press.)CrossRefGoogle Scholar
Draper, D. E. & Von, Hippel P. H. (1978 b). Nucleic acid binding properties of E. coli ribosomal protein Si. 11. Cooperativity and specificity of binding site II. J. molec. Biol. (In the Press.)Google Scholar
Durand, M.Maurizot, J. C.Borazan, H. N. & Héléne, C. (1975). Interaction of aromatic residues of proteins with nucleic acids. Circular dichroism studies of the binding of oligopeptides to poly(adenylic acid). Biochemistory, N.Y. 14, 563570.CrossRefGoogle ScholarPubMed
Dwek, R. A. (1973). Nuclear Magnetic Resonance in Biochemistry. Oxford: Clarendon Press.Google Scholar
Eisenberg, H. (1974). Hydrodynamic and thermodynamic studies. In Basic Principles in Nucleic Acid Chemistry, vol. II (ed. Ts'o, P. O. P.), pp. 171264. New York: Academic Press.CrossRefGoogle Scholar
Elson, E. L.Scheffler, I. E. & Baldwin, R. L. (1970). Helix formation by d(TA) oligomers. III. Electrostatic effects. J. molec. Biol. 54, 401415.CrossRefGoogle Scholar
Felsenfeld, G. & Miles, H. T. (1967). The physical and chemical properties of nucleic acids. A. Rev. Biochem. 36, 407448.CrossRefGoogle ScholarPubMed
Friedberg, F. (1974). Effects of metal binding on protein structure. Q. Rev. Biophys. 7, 133.CrossRefGoogle ScholarPubMed
Friedberg, F. & Bose, S. (1969). Ion binding by α-chymotrypsin. Biochemistory, N.Y. 8, 25642567.CrossRefGoogle ScholarPubMed
Friedberg, F. & Emiola, L. O. (1968). Ion binding by metmyoglobin. Biochemistory, N.Y. 7, 21832185.CrossRefGoogle ScholarPubMed
Frigon, R. P. & Timasheff, S. N. (1975). Magnesium-induced self association of calf brain tubulin. II. Thermodynamics. Biochemistory, N.Y. 14, 45674573.CrossRefGoogle ScholarPubMed
Gillberg-La, Force G. & Forsén, S. (1970). The binding of anionic surfactants to human serum albumin studied by means of 81Br nuclear magnetic resonance. Biochem. biophys. Res. Commun 38, 137142.CrossRefGoogle Scholar
Greene, R. F. Jr & Pace, C. N. (1974). Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin and β lactoglobulin. J. biol. Chein. 249, 53885393.CrossRefGoogle ScholarPubMed
Gruenwedel, P. W. & Hsu, C. H. (1969). Salt effects on the denaturation of DNA. Biopolymers 7, 557570.CrossRefGoogle ScholarPubMed
Guidotti, G. (1967). Studies on the chemistry of hemoglobin. II. The effect of salts on the dissociation of hemoglobin into subunits. J. biol. Chem. 242, 36853693.CrossRefGoogle ScholarPubMed
Haire, R. N. & Hedlund, B. E. (1977). Thermodynamic aspects of the linkage between binding of chloride and oxygen to human hemoglobin. Proc. natn. Acad. Sci. U.S.A. 74, 41354138.CrossRefGoogle ScholarPubMed
Hamabata, A. & Von, Hippel P. H. (1973). Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. II. Effects of vicinal hydrophobic groups on the specificity of binding of ions to amide groups. Biochemistory, N.Y. 12, 12641271.CrossRefGoogle ScholarPubMed
Hamabata, A.Chang, S. & Von, Hippel P. H. (1973). Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. III. Solubility of fatty acid amides in ionic solutions. Biochemistory, N.Y. 12, 12711278.CrossRefGoogle Scholar
Hamaguchi, K. & Geiduschek, E. P. (1962). The effect of electrolytes on the stability of the deoxyribonucleate helix. J. Am. chem. Soc. 84, 13291338.CrossRefGoogle Scholar
Herskovits, T. T.Cavanagh, S. M. & San, George R. D. (1977). Light-scattering investigations of the subunit dissociation of human hemoglobin. A. Effects of various neutral salts. Biochemistry, N. Y. 16, 57955801.CrossRefGoogle ScholarPubMed
Ibanez, V. S. & Herskovits, T. T. (1976). Effects of the aliphatic carboxylate series of salts on the conformation of proteins. Biochemistry, N. Y. 15, 57085714.CrossRefGoogle ScholarPubMed
Jencks, W. P. (1969). Catalysis in Chemistry and Enzymology. New York: McGraw-Hill.Google Scholar
Jensen, D. E.Kelly, R. C. & Von, Hippel P. H. (1976). DNA melting proteins. II. Effects of bacteriophage T4 gene-32 protein binding on the conformation and stability of nucleic acid structures. J. biol. Chem. 251, 72157228.CrossRefGoogle ScholarPubMed
Jensen, D. E. & Von, Hippel P. H. (1976). DNA ‘melting’ proteins. I. Effects of bovine pancreatic ribonuclease binding on the conformation and stability of DNA. J. biol. Chem. 251, 71987214.CrossRefGoogle ScholarPubMed
Jonas, A. & Weber, G. (1971). Presence of arginine residues at the strong, hydrophobic anion binding sites of bovine serum albumin. Biochemistory, N.Y. 10, 13351339.CrossRefGoogle ScholarPubMed
Josephs, R. & Harrington, W. F. (1968). On the stability of myosin filaments. Biochemistory, N.Y. 7, 28342847.CrossRefGoogle ScholarPubMed
Katsura, I. & Noda, H. (1973). Further studies on the formation of reconstituted myosin filaments. J. Biochem (Tokyo) 73, 245256.Google ScholarPubMed
Kellett, G. L. (1971). Dissociation of hemoglobin into subunits: Ligandlinked dissociation at neutral pH. J. molec. Biol. 59 401424.CrossRefGoogle ScholarPubMed
Kirshner, A. G. & Tanford, C. (1964). The dissociation of hemoglobin by inorganic salts. Biochemistory, N.Y. 3, 291296.CrossRefGoogle ScholarPubMed
Klotz, I. M. (1953). Protein interactions. In The Proteins, vol. I B (ed.Neurath, H. and Bailey, K.), pp. 727806. New York: Academic Press.Google Scholar
Klotz, I. M.Darnall, D. W. & Langerman, N. R. (1975). Quaternary structure of proteins. In The Proteins, vol. I, 3rd ed. (ed. Neurath, H. and Hill, R. L.), pp. 294411. New York: Academic Press.Google Scholar
Klotz, I. M. & Urquhart, J. M. (1975). The binding of organic ions by proteins. Buffer effects. J. Phys. Chem. 53, 100114.CrossRefGoogle Scholar
Klump, H. & Ackermann, T. (1971). Experimental thermodynamics of the helix-random coil transition. IV. Influence of the base composition of the DNA on the transition enthalpy. Biopolymers 10, 513522.CrossRefGoogle ScholarPubMed
Knapp, J. A. & Pace, C. N. (1974). Guanidine hydrochloride and acid denaturation of horse, cow, and candida krusei cytochromes C. Biochemistory, N.Y. 13, 12891294.CrossRefGoogle ScholarPubMed
Kotin, L. (1963). On the effect of ionic strength on the melting temperature of DNA. J. molec. Biol. 7, 309311.CrossRefGoogle ScholarPubMed
Krakauer, H. (1974) A thermodynamic analysis of the influence of simple monovalent and divalent cations on the conformational transitions of polynucleotide complexes. Biochemistory, N.Y. 13, 25792589.CrossRefGoogle ScholarPubMed
Krakauer, H. & Sturtevant, J. M. (1968). Heats of the helix-coil transitions of the polyA-polyU complexes. Biopolymers 6, 491512.CrossRefGoogle Scholar
Latt, S. A. & Sober, H. A. (1967). Protein-nucleic acid interactions. II. Oligopeptide-polyribonucleotide binding studies. Biochemistory, N.Y. 6, 32933306.CrossRefGoogle ScholarPubMed
Lee, J. C. & Timasheff, S. N. (1977). In vitro reconstitution of calf brain microtubules: Effect of solution variables. Biochemistory, N.Y. 16, 17541764.CrossRefGoogle ScholarPubMed
Lewis, M. S. & Saroff, H. A. (1957). The binding of ions to the muscle proteins. Measurements on the binding of potassium and sodium ions to myosin A, myosin B, and actin. J. Am. chem. Soc. 79, 21122117.CrossRefGoogle Scholar
Lifson, S. (1964). Partition functions of linear-chain molecules. J. chem. Phys. 40, 37053710.CrossRefGoogle Scholar
Lindman, B. & Forsén, S. (1976). Chlorine, Bromine and Iodine NMR. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lindman, B.Kamenke, N. & Brun, B. (1972). Detergent translational mobility in the presence of human serum albumin. Biochim. biophys. Acta. 285, 118123.CrossRefGoogle ScholarPubMed
Loeb, G. I. & Saroff, H. A. (1964). Chloride- and hydrogen-ion binding to ribonuclease. Biochemistory, N.Y. 3, 18191826.CrossRefGoogle ScholarPubMed
Lohman, T. M. & Record, M. T. Jr, (1978). (In preparation.)Google Scholar
Lohman, T. M.Wensley, C. G. & Record, M. T. Jr, (1978). (In preparation.)Google Scholar
Long, F. A. & McDevit, W. F. (1952). Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem. Revs. 51, 119169.CrossRefGoogle Scholar
Longsworth, L. G. & Jacobsen, C. F. (1949). An electrophoretic study of the binding of salt ions by β-lactoglobulin and bovine serum albumin. J. Phys. Chem. 53, 126135.CrossRefGoogle ScholarPubMed
Losick, R. & Chamberlin, M. (eds.) (1976). RNA Polymerase. New York: Cold Spring Harbor Press.Google ScholarPubMed
Mandelkern, L. & Stewart, W. E. (1964). The effect of neutral salts on the melting temperature and regeneration kinetics of the ordered collagen structure. Biochemistory, N.Y. 3, 11351137.CrossRefGoogle ScholarPubMed
Manning, G. S. (1969). Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. chem. Phys. 51, 924933.CrossRefGoogle Scholar
Manning, G. S. (1972 a). On the application of polyelectrolyte ‘limiting laws’ to the helix-coil transition of DNA. I. Excess univalent cations. Biopolymers II, 937949.CrossRefGoogle Scholar
Manning, G. S. (1972 b). On the application of polyelectrolyte ‘limiting laws’ to the helix-coil transition of DNA. II. The effect of Mg++ counterions. Biopolymers II, 951955.CrossRefGoogle Scholar
Manning, G. S. (1974). Limiting laws for equilibrium and transport properties of polyelectrolyte solutions. In Polyelectrolytes (ed. Selegny, E.), pp. 938. Holland: Reidel.CrossRefGoogle Scholar
Manning, G. S. (1975). Remarks on the paper ‘Nuclear magnetic relaxation of 23Na in polyelectrolyte solutions’ by van der Klink, Zuiderweg and Leyte. J. chem. Phys. 62, 748749.CrossRefGoogle Scholar
Manning, G. S. (1976). The application of polyelectrolyte limiting laws to the helix-coil transition of DNA. VI. The numerical value of the axial phosphate spacing for the coil. Biopolymers 15, 23852390.CrossRefGoogle Scholar
Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. II, 179246.CrossRefGoogle Scholar
Manning, G. S. & Holtzer, A. (1973). Application of polyelectrolyte limiting laws to potentiometric titration. J. Phys. Chem. 77, 22062212.CrossRefGoogle Scholar
McGhee, J. D. (1976). Theoretical calculations of the helix-coil transition of DNA in the presence of large cooperatively binding ligands. Biopolymers 15, 13451375.CrossRefGoogle ScholarPubMed
McGhee, J. D. & Von, Hippel P. H.Theoretical aspects of DNA-protein interactions: cooperative and non-cooperative binding of large ligands to a one dimensional homogeneous lattice. J. molec. Biol. 86, 469489.CrossRefGoogle Scholar
Mukerjee, P. (1965). Salt effects on nonionic association colloids. J. Phys. Chem. 69, 40384040.CrossRefGoogle Scholar
Nakanishi, M.Tsuboi, M. & Ikegani, A. (1973). Fluctuation of the lysozyme structure. II. Effects of temperature and binding of inhibitors. J. molec. Biol. 75, 673682.CrossRefGoogle ScholarPubMed
Nandi, P. K. & Robinson, D. R. (1972 a). The effects of salts on the free energy of the peptide group. J. Am. chem. Soc. 94, 12991308.CrossRefGoogle ScholarPubMed
Nandi, P. K. & Robinson, D. R. (1972 b). The effects of salts on the free energies of nonpolar groups in model peptides. J. Am. chem. Soc. 94, 13081315.CrossRefGoogle ScholarPubMed
Nelson, C. A.Hummel, J. P.Swenson, C. A. & Friedman, L. (1962). Stabilization of pancreatic ribonuclease against urea denaturation by anion binding. J. biol. Chem. 237, 15751580.CrossRefGoogle ScholarPubMed
Norne, J. E.Hjalmarsson, S. G.Lindman, B. & Zeppezauer, M. (1975 a). Anion binding properties of human serum albumin from halide ion quadrapole relaxation. Biochemistory, N.Y. 14, 34013408.CrossRefGoogle Scholar
Norne, J. E.Lilja, H.Lindman, B.Einarsson, R. & Zeppezauer, M. (1975 b). Pt(CN)42- and Au(CN)2-: Potential general probes for anion- binding sites of proteins. 35Cl and 81Br NMR studies. Eur. J. Biochem. 59, 463473.CrossRefGoogle Scholar
Olson, W. K. & Manning, G. S. (1976). A configurational interpretation of the axial phosphate spacing in polynucleotide helices and random coils. Biopolymers 15, 23912405.CrossRefGoogle ScholarPubMed
Oosawa, F. (1971). Polyelectrolytes. New York: Marcel Dekker.Google Scholar
Pande, C. S. & McMenamy, R. H. (1970). Thiocyanate binding with modified bovine plasma albumins. Archs Biochem. Biophys. 136, 260267.CrossRefGoogle ScholarPubMed
Passero, F.Gabbay, E. J., Gaffney, B. & Kurucsev, T. (1970). Topography of nucleic acid helices in solutions. Stoichiometry and specificity of the interaction of reporter molecules with nucleic acid helices. Macromolecules 3, 158162.CrossRefGoogle Scholar
Pfeil, W. & Privalov, P. L. (1976 a). Thermodynamic investigation of proteins. I. Standard functions for protein with lysozyme as an example. Biophys. Chem. 4, 2332.CrossRefGoogle ScholarPubMed
Pfeil, W. & Privalov, P. L. (1976 b). Thermodynamic investigations of proteins. II. Calorimetric study of lysozyme denaturation by guanidine hydrochloride. Biophys. Chem. 4, 3340.CrossRefGoogle ScholarPubMed
Pfeil, W. & Privalov, P. L. (1976 c). Thermodynamic investigations of proteins. III. Thermodynamic description of lysozyme. Biophys. Chem. 4, 4150.CrossRefGoogle ScholarPubMed
Poliakow, M. C.Champagne, M. H. & Daune, M. P. (1972). Interactions protéines-acides nucléiques 2. Étude de l'association d'histones riches en lysine avec la DNA. Eur. J. Biochem. 26, 212219.CrossRefGoogle Scholar
Privalov, P. L. & Khechinashvili, N. N. (1974). A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. molec. Biol. 86, 665684.CrossRefGoogle Scholar
Privalov, P. L.Ptitsyn, O. B. & Birshtein, T. M. (1969). Determination of stability of the DNA double helix in an aqueous medium. Biopolymers 8, 559571.CrossRefGoogle Scholar
Puett, D. (1973). The equilibrium unfolding parameters of horse and sperm whale myoglobin. Effects of guanidine hydrochloride, urea, and acid. J. biol. Chem. 248, 46234634.CrossRefGoogle ScholarPubMed
Record, M. T. Jr, (1967 a). Polyelectrolyte effects on polynucleotide transitions. I. Behavior at neutral pH. Biopolymers 5, 975992.CrossRefGoogle Scholar
Record, M. T. Jr, (1967b). Polyelectrolyte effects on polynucleotide transitions. II. Behavior of titrated systems. Biopolymers 5, 9931008.CrossRefGoogle Scholar
Record, M. T. Jr, (1975). Effects of Na+ and Mg++ on the helix-coil transition of DNA. Biopolymers 14, 21372158.CrossRefGoogle Scholar
Record, M. T. JrDehaseth, P. L. & Lohman, T. M. (1977). Interpretation of monovalent and divalent ion effects on the lac repressor—operator interaction. Biochemistory, N.Y. 16, 47914796.CrossRefGoogle ScholarPubMed
Record, M. T. Jr & Lohman, T. M. (1978). A semi-empirical extension of polyelectrolyte theory to the treatment of oligoelectrolytes. Application to oligonucleotide helix-coil transitions. Biopolymers 17, 159166.CrossRefGoogle Scholar
Record, M. T. JrLohman, T. M. & DeHaseth, P. L. (1976 a). Ion effects on ligand-nucleic acid interactions. J. molec. Biol. 107, 145158.CrossRefGoogle ScholarPubMed
Record, M. T. JrWoodbury, C. P. & Lohman, T. M. (1976b). Na+ effects on transitions of DNA and polynucleotides of variable linear charge density. Biopolymers 15, 893915.CrossRefGoogle ScholarPubMed
Reuben, J. & Gabbay, E. J. (1975). Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Biochemistory, N.Y. 14, 12301235.CrossRefGoogle ScholarPubMed
Reuben, J.Shporer, M. & Gabbay, E. J. (1977). The alkali-ion–DNA interaction as reflected in the nuclear relaxation rates of 23Na and 87Rb. Proc. natn. Acad. Sci. U.S.A. 72, 245247.CrossRefGoogle Scholar
Revzin, A. & Von, Hippel P. H. (1977). Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistory, N.Y. 16, 47694776.CrossRefGoogle ScholarPubMed
Richards, F. & Wyckoff, H. (1971). Bovine pancreatic ribonuclease. In The Proteins, vol. 4 (ed. Boyer, P. D.), pp. 647806.Google Scholar
Riggs, A. (1971). Mechanism of the enhancement of the Bohr effect in mammalian hemoglobins by diphosphoglycerate. Proc. natn. Acad. Sci. U.S.A. 68, 20622065.CrossRefGoogle ScholarPubMed
Riggs, A. D.Bourgeois, S. & Cohn, M. (1970 b). The lac repressor—operator interaction. III. Kinetic studies. J. molec. Biol. 53, 401417.CrossRefGoogle Scholar
Riggs, A. D.Suzuki, H. & Bourgeois, S. (1970 a). Lac repressor—operator interaction. I. Equilibrium Studies. J. molec. Biol. 48, 6783.CrossRefGoogle ScholarPubMed
Rix-Montel, M. A.Grassi, H. & Vasilescu, D. (1974). Experimental studies of thermal denaturation of the Na—DNA system with respect to Manning's model. Biophys. Chem. 2, 278289.CrossRefGoogle ScholarPubMed
Rix-Montel, M. A.Grassi, A. & Vasilescu, D. (1976). Dielectric study of the interaction between DNA and an oligopeptide (lysine-tyrosinelysine). Nucl. Acids Res. 3, 10011011.CrossRefGoogle Scholar
Robinson, D. R. & Grant, M. E. (1966). The effects of aqueous salt solutions on the activity coefficients of purine and pyrimidine bases and their relation to the denaturation of deoxyribonucleic acid by salts. J. biol. Chem. 241, 40304042.CrossRefGoogle Scholar
Robinson, D. R. & Jencks, W. P. (1965 a). The effect of concentrated salt solutions on the activity coefficient of acetyltetraglycine ethyl ester. J. Am. chem. Soc. 87, 24702479.CrossRefGoogle ScholarPubMed
Robinson, D. R. & Jencks, W. P. (1965 b). The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. J. Am. chem. Soc. 87, 24622470.CrossRefGoogle ScholarPubMed
Robinson, R. A. & Stokes, R. H. (1959). Electrolyte Solutions, 2nd ed. London: Butterworths.Google Scholar
Rollema, H. S.De, Bruin S. H.Janssen, L. H. M. & Van, Os G. A. S. (1975). The effect of potassium chloride on the Bohr effect of human hemoglobin. J. biol. Chem. 250, 13331339.CrossRefGoogle ScholarPubMed
Salahuddin, A. & Tanford, C. (1970). Thermodynamics of the denaturation of ribonuclease by guanidine hydrochloride. Biochemistory, N.Y. 9, 13421347.CrossRefGoogle ScholarPubMed
Saroff, H. A. & Carroll, W. R. (1962). The binding of chloride and sulfate ions to ribonuclease. J. biol. Chem. 237, 33843387.CrossRefGoogle ScholarPubMed
Saucier, J.-M. (1977). Physicochemical studies on the interaction of irehdiamine A with bihelical DNA. Biochemistory, N.Y. 16, 58795889.CrossRefGoogle ScholarPubMed
Scatchard, G. (1949). The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660672.CrossRefGoogle Scholar
Scatchard, G. & Black, E. S. (1949). The effects of salts on the isoionic and isoelectric points of proteins. J. Phys. Chem. 53, 8899.CrossRefGoogle ScholarPubMed
Scatchard, G. & Yap, W. T. (1964). The physical chemistry of protein solutions. XII. The effects of temperature and hydroxide ion on the binding of small anions to human serum albumin. J. Am. chem. Soc. 86, 34343438.CrossRefGoogle Scholar
Schellman, J. (1974). Cooperative multi-site binding to DNA. Israel Jnl Chem. 12, 219238.CrossRefGoogle Scholar
Schellman, J. (1975). Macromolecular binding. Biopolymers 14, 9991018.CrossRefGoogle Scholar
Schildkraut, C. & Lifson, S. (1965). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3, 195208.CrossRefGoogle ScholarPubMed
Schrier, E. E. & Schrier, E. B. (1967). The salting-out behavior of amides and its relation to the denaturation of proteins by salts. J. Phys. Chem. 71, 18511860.CrossRefGoogle Scholar
Shiao, D. D. F. & Sturtevant, J. M.Heats of thermally induced helix-coil transitions of DNA in aqueous solution. Biopolymers 12, 18291836.CrossRefGoogle Scholar
Steinhardt, J. & Beychok, S. (1964). Interaction of proteins with hydrogen ions and other small ions and molecules. In The Proteins (ed. Neurath, H.), pp. 140304. New York: Academic Press.Google Scholar
Steinhardt, J. & Reynolds, J. A. (1969). Multiple Equilibria in Proteins. New York: Academic Press.Google Scholar
Suelter, C. H. (1974). Monovalent cations in enzyme-catalyzed reactions. In Metal Ions in Biological Systems, vol. 3 (ed. Sigel, H.). Vol. 3. High Molecular Weight Complexes, pp. 201251. New York: Marcell Dekker.Google Scholar
Tanford, C. (1969). Extension of the theory of linked functions to incorporate the effects of protein hydration. J. molec. Biol. 39, 539544.CrossRefGoogle ScholarPubMed
Tanford, C. & Aune, K. C. (1970). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. III. Dependence on temperature. Biochemistory, N.Y. 9, 206211.CrossRefGoogle Scholar
Taylor, R. P. & Kuntz, I. D. Jr (1972). Proton acceptor abilities of anions and possible relevance to the Hofmeister series. J. Am. chem. Soc. 94, 79637965.CrossRefGoogle Scholar
Thomas, J. O. & Edelstein, S. (1973). Observation of the dissociation of unliganded hemoglobin. II. Effect of pH, salt and dioxane. J. biol. Chem. 248, 29012905.CrossRefGoogle ScholarPubMed
Valdes, R. & Ackers, G. K. (1977). Thermodynamic studies on subunit assembly in human hemoglobin. Self-association of oxygenated chains (αSH and βSH): Determination of stoichiometries and equilibrium constants as a function of temperature. J. biol. Chem. 252, 7481.CrossRefGoogle ScholarPubMed
Van, Der Klink J. J.Zuiderweg, L. H. & Leyte, J. D. (1974). Nuclear magnetic relaxation of 23Na in polyelectrolyte solutions. J. chem. Phys. 60, 23912399; 62, 749 (1975).Google Scholar
Von, Hippel P. H. & McGhee, J. D. (1972). DNA-protein interactions. A. Rev. Biochem. 41, 231300.Google Scholar
Von, Hippel P. H.Peticolas, V.Schack, L. & Karlson, L. (1973) Model studies on the effects of neutral salts on the conformational stability of biological macromolecules. I. Ion binding to polyacrylamide and polystyrene columns. Biochemistory, N.Y. 12, 12561264.Google Scholar
Von, Hippel P. H. & Schleich, T. (1969 a). The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In Biological Macromolecules. Vol. 2. Structure and Stability of Biological Macromolecules (ed. Timasheff, S. N. and Fasman, G.), pp. 417574. New York: Marcel Dekker.Google Scholar
Von, Hippel P. H. & Schleich, T. (1969 b). Ion effects on the solution structure of biological macromolecules. Acc. Chem. Res. 2, 257265.Google Scholar
Von, Hippel P. H. & Wong, K. Y. (1962). The effects of ions on the kinetics of formation and the stability of the collagen-fold. Biochemistory, N.Y. 1, 664674.Google Scholar
Von, Hippel P. H. & Wong, K. Y. (1965). On the conformational stability of globular proteins. The effects of various electrolytes and nonelectrolytes on the thermal ribonuclease transition. J. biol. Chem. 240, 39093923.Google Scholar
Wang, J. C. & Davidson, N. (1966). Thermodynamic and kinetic studies on the interconversion between the linear and circular forms of phage lambda DNA. J. molec. Biol. 19, 469482.CrossRefGoogle Scholar
Wang, J. C. & Davidson, N. (1968). Cyclization of phage DNAs. Cold Spring Harb. Symp. quant. Biol. 33, 409415.CrossRefGoogle ScholarPubMed
Wensley, C. G. & Record, M. T. Jr (1978). (In preparation.)Google Scholar
Wickett, R. R.Li, H. S. & Isenberg, I. (1972). Salt effects on histone IV conformation. Biochemistory, N.Y. II, 29522957.CrossRefGoogle Scholar
Wyman, J. (1948). Heme proteins. Ado. Protein Chem. 4, 407531.CrossRefGoogle ScholarPubMed
Wyman, J. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223286.CrossRefGoogle ScholarPubMed