Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T13:16:55.183Z Has data issue: false hasContentIssue false

Nucleosomes structure and its dynamic transitions

Published online by Cambridge University Press:  17 March 2009

Andrei D. Mirzabekov
Affiliation:
Institute of Molecular Biology, Academy of Science, Moscow, USSR

Extract

The discovery of nucleosomes as a basic repeating unit of the chromatin structure organizing the major part of eukaryotic DNA greatly catalyzes the expansion of our knowledge on chromatin. Several lines of experimental evidence have led to the formulation of the nucleosome conception: the observation of chains of globular particles in electron micrographs of chromatin (Olins & Olins, 1974); the demonstration that DNA is released as a set of discrete sizes upon digestion of chromatin with endogenous nucleases (Hewish & Burgoyne, 1973); the isolation of discrete nucleoprotein particles upon digestion of chromatin with micrococcal nuclease (Rill & Van Holde, 1973).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agranovitch, I. M., Lapiashvili, R. N., Maslova, R. N. & Varshavsky, Ya. M. (1980). On conformational differences of DNA in chromatin and compact particles revealed by slow 1H–3H exchange method. Mol. Biol.(U.S.S.R.) 14, 421428.Google Scholar
Axel, R. (1975). Cleavage of DNA in nuclei and chromatin with staphylococcal nuclease. Biochemistry 14, 29212925.CrossRefGoogle ScholarPubMed
Bakayev, V. V., Bakayeva, T. G. & Varshavsky, A. Y. (1977). Nucleosomes and subnucleosomes: heterogeneity and composition. Cell II, 619629.CrossRefGoogle Scholar
Bakayev, V. V., Bakayeva, T. G., Schmatchenko, V. V. & Georgiev, G. P. (1978). Non-histone proteins in mononucleosomes and subnucleosomes. Eur., J. Biochem. 91, 291301.Google ScholarPubMed
Bakayev, V. V., Schmatchenko, V. V. & Georgiev, G. P. (1979). Subnucleosomal particles containing high mobility group proteins HMG-E and HMG-G originated from transcriptionally active chromatin. Nucl. Acids. Res. 7, 15251540.CrossRefGoogle Scholar
Baldwin, J. P., Boseley, P. G., Bradrury, E. M. & Ibel, K. (1975). The subunit structure of the eukaryotic chromosomes. Nature, Lond. 253, 245249.CrossRefGoogle Scholar
Beard, P. (1978). Mobility of histones on the chromosomes of simian virus 40. Cell 15, 955967.CrossRefGoogle ScholarPubMed
Belyavsky, A. V., Bavykin, S. G., Goguadze, E. G. & Mirzabekov, A. D. (1980). Primary organization of nucleosomes containing all five histones and DNA 175 and 165 base-pairs long. J. Molec. Biol. 139, 519536.CrossRefGoogle Scholar
Bina-Stein, M. & Simson, R. T. (1977). Specific folding and contraction of DNA by histones H3 and H4. Cell III 609618.CrossRefGoogle Scholar
Böhm, L., Crane-Robinson, C. & Sautiere, P. (1980). Proteolytic digestion studies of chromatin core-histone structure. Eur. J. Biochem. 106, 525531.CrossRefGoogle ScholarPubMed
Bonner, W. (1978). Proximity and accessibility studies of histones in nuclei and free nucleosomes. Nucl. Acids Res. 5, 7185.CrossRefGoogle ScholarPubMed
Boulikas, T., Wiseman, J. M. & Garrard, W. T. (1980). Points of contact between histone Hi and the histone octamer. Proc. natn. Acad. Sci., U.S.A. 77, 127131.CrossRefGoogle Scholar
Bradbury, E. M., Carpenter, B. G. & Rattle, H. W. E. (1973). Magnetic resonance studies of deoxyribonucleoprotein. Nature, Lond. 241, 123126.CrossRefGoogle ScholarPubMed
Bradbury, E. M., Chapman, G., Danby, S., Hartman, P. & Riches, P. (1975). Properties of the N-terminal and C-terminal halves of histone Hi. Eur. J. Biochem. 57, 521528.CrossRefGoogle Scholar
Bradbury, E. M., Moss, T., Hayashi, H., Hjelm, R. P., Suau, P., Stephens, R. M., Baldwin, J. P. & Crane-Robinson, C. (1978). Nucleosomes, histone interactions, and the role of histones H3 and H4. Cold Spring Harb. Symp. quant. Biol. 42, 277286.CrossRefGoogle ScholarPubMed
Brandt, W. F., Böhm, L. & Van Holt, V. (1975). Proteolytic degradation of histones and site of cleavage in histones F2A and F3. FEBS Lett. 51, 8893.CrossRefGoogle Scholar
Camerini-Otero, R. D. & Felsenfeld, G. (1977 a). Supercoiling energy and nucleosome formation: the role of the argine-rich histone kernel. Nucl. Acids Res. 4, 11591181.CrossRefGoogle Scholar
Camerini-Otero, R. D. & Felsenfeld, G. (1977 b). Histone H3 disulfide dimers and nucleosome structure. Proc. natn. Acad. Sci., U.S.A. 74, 55195523.CrossRefGoogle ScholarPubMed
Cech, T. R., Potter, D. & Pardue, M. L. (1978). Chromatin structure in living cells. Cold Spring Harb. Symp. quant. Biol. 42, 191198.CrossRefGoogle ScholarPubMed
Champness, J. N., Bloomer, A. C., Bricoque, G., Butler, P. J. G. & Klug, A. (1976). The structure of the protein disc of tobacco mosaic virus to A resolution. Nature, Lond. 259, 2024.CrossRefGoogle Scholar
Chao, M. V., Gralla, J. & Martinson, H. G. (1979). DNA sequence direct placement of histone cores on restriction fragments during nucleosome formation. Biochemistry 18, 10681074.CrossRefGoogle ScholarPubMed
Chao, M. V., Gralla, J. D. & Martinson, H. G. (1980). Lac operator nucleosome. I. Repressor binds specifically to operator within the nucleosome core. Biochemistry 19, 32543260.CrossRefGoogle ScholarPubMed
Clark, R. J. & Felsenfeld, G. (1971). Structure of chromatin. Nature, (New Biol.) 229, 101106.Google Scholar
Cotter, R. I. & Lilley, D. M. J. (1977). The conformation of DNA and protein within chromatin subunits. FEBS Lett. 82, 6368.CrossRefGoogle Scholar
D'anna, J. A. & Isenberg, I. (1974). A histone cross-complexing pattern. Biochemistry 13, 49924997.CrossRefGoogle ScholarPubMed
DeLange, R. J., Williams, L. C. & Martinson, H. G. (1979). Identification of interacting amino acids at the histone 2A-2B binding site. Biochemistry 18, 19421946.CrossRefGoogle ScholarPubMed
Dietrich, A. E., Axel, R. & Cantor, C. R. (1979). Salt induced structural changes of nucleosome core particles. J. molec. Biol. 129, 587602.CrossRefGoogle Scholar
Doenecke, D. (1977). Binding of polylysine to chromatin subunits and cleavage by micrococcal nuclease. Eur. J. Biochem. 76, 355363.CrossRefGoogle ScholarPubMed
Dubochet, J. & Noll, M. (1978). Nucleosome arcs and helices. The nucleosome is a dynamic structure showing large conformational variability. Science, N. Y. 202, 280286.CrossRefGoogle Scholar
Felsenfeld, G. (1978). Chromatin. Nature, Lond. 271, 115122.CrossRefGoogle ScholarPubMed
Finch, J. T., Lutter, L. C., Rhodes, D., Brown, R. S., Rushton, B., Levitt, M. & Klug, A. (1977). Structure of nucleosome core particles of chromatin. Nature, Lond. 269, 2936.CrossRefGoogle ScholarPubMed
Foe, V. E., Wilkinson, L. E. & Laird, C. D. (1976). Comparative organization of active transcriptional units in Oncopeltus fasciatus. Cell 9, 131147.CrossRefGoogle ScholarPubMed
Garrett, R. A. (1979). Structure of chromatin. Int. Rev. Biochem. 25, 179203.Google Scholar
Gary, P., Moss, T. & Bradbury, E. M. (1978). High-resolution proton magnetic resonance studies of chromatin core particles. Eur. J. Biochem. 89, 475482.Google Scholar
Georgiev, G. P., Nedospasov, S. A. & Bakaev, V. V. (1978). Supranucleosomal levels of chromatin organization. In The Cell Nucleus (ed. Bush, H.), pp. 434. Academic Press.Google Scholar
Germond, J. E., Hirt, B., Oudet, P., Gross-Belard, M. & Chambon, P. (1975). Folding of the DNA double helix in chromatin-like structures from simian virus SV-40. Proc. natn. Acad. Sci., U.S.A. 72, 18431847.CrossRefGoogle Scholar
Germond, J. E., Bellard, M., Oudet, P. & Chambon, P. (1976). Stability of nucleosomes in native and reconstituted chromatins. Nucl. Acids Res. 3, 31733192.CrossRefGoogle ScholarPubMed
Gilbert, W., Maxam, A. & Mirzabekov, A. D. (1976). Contacts between the lac repressor and DNA revealed by methylation. In Control of Ribosome Synthesis (ed. Kjeldgaard, N. O. and Maale, O.), pp. 139148. Copenhagen: Munksgaard.Google Scholar
Girardet, J. L. & Lawrence, J. J. (1979). Experimental evidence for asymmetric shielding of nucleosomal DNA by histones. Nucl. Acids Res. 7, 24192429.CrossRefGoogle ScholarPubMed
Glotov, B.O., Nikolaev, L. G. & Severin, E. S. (1978). Histone HI-DNA interaction. On the mechanism of DNA strands cross-linking by HI. Nacl. Acids Res. 5, 25872605.CrossRefGoogle Scholar
Goldblatt, D., Bustin, M. & Sperlin, R. (1978). Heterogeneity in the interaction of chromatine subunits with anti-histone sera visualized by immuno-electron microscopy. Expl Cell Res. 112, 114.CrossRefGoogle Scholar
Goldknopf, I. L. & Busch, H. (1977). Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate protein A-24. Proc. nain. Acad. Sci., U.S.A. 74, 864868.CrossRefGoogle Scholar
Gordon, V. C., Knobler, C. M., Olins, D. E. & Schumaker, V. N. (1978). Conformational changes of the chromatin subunits. Proc. natn. Acad. Sci., U.S.A. 75, 660663.CrossRefGoogle Scholar
Green, M. H. & Brooks, T. L. (1977). The SV-40 transcription complex. II. Non dissociation of protein from SV-40 chromatin during transcription. Nucl. Acids Res. 4, 42794289.CrossRefGoogle ScholarPubMed
Greil, W., Igo-Kemenes, T. & Zachau, H. G. (1976). Nuclease digestion between and within nucleosomes. Nucl. Acids. Res. 3, 26332644.CrossRefGoogle ScholarPubMed
Griffith, J. D. (1975). Chromatin structure deduced from a minichromosome. Science, N.Y. 187, 12021203.CrossRefGoogle ScholarPubMed
Hardison, R. C., Zeitler, D. P., Murphy, J. M. & Chalkley, R. (1977). Histone neighbours in nuclei and extended chromatin. Cell 12, 417427.CrossRefGoogle ScholarPubMed
Harrington, R. E. (1977). DNA chain flexibility and the structure of chromatin-bodies. Nucl. Acids Res. 4, 35193535.CrossRefGoogle Scholar
Hartman, P. G., Chapman, G. E., Moss, T. & Bradbury, E. M. (1977). Studies on the role and mode of operation of the very lysine rich histone HI in eukaryote chromatin. Eur. J. Biochem. 77, 4557.CrossRefGoogle Scholar
Hewish, D. R. & Burgoyne, A. L. (1973). Chromatin substructure. The digestion of chromatin at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Commun. 52, 504510.CrossRefGoogle ScholarPubMed
Isenberg, I. (1979). Histones. A. Rev. Biochem. 48, 159191.CrossRefGoogle ScholarPubMed
Itkes, A. V., Glotov, B. O., Nikolaev, L. G. & Severin, E. S. (1980). Repeating oligonucleosomal units. A new element of chromatin structure. Nucl. Acids Res. 8, 507527.CrossRefGoogle Scholar
Jackson, V. (1978). Studies on histone organization in the nucleosome using formaldehyde as a reversible crosslinking agent. Cell 15, 945954.CrossRefGoogle Scholar
Klevan, L. & Crothers, D. M. (1977) Isolation and characterization of a spacerless dinucleosome from HI depleted chromatin. Nucl. Acids Res 4, 40774089.CrossRefGoogle Scholar
Kolchinsky, A. M., San'ko, D. F., Shick, V. V., Mirzabekov, A. D. & Geneitis, A. A. (1978). The state of DNA grooves in mono- and oligonucleosomes and complexes of DNA with histone fractions. Mol. Biol. (U.S.S.R.) 12, 365371.Google Scholar
Kornberg, R. D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science, N.Y. 184, 868871.CrossRefGoogle ScholarPubMed
Kornberg, R. (1977). Structure of chromatin. A. Rev. Biochem. 46, 931954.CrossRefGoogle ScholarPubMed
Lacy, E. & Axel, R. (1975). Analysis of DNA in isolated chromatin subunits. Proc. natn. Acad. Sci., U.S.A. 72, 39783983.CrossRefGoogle ScholarPubMed
Langmore, J. P. & Wooley, J. C. (1975). Chromatin architecture: investigation of subunit of chromatin by dark field electron microscopy. Proc. natn. Acad. Sri., U.S.A. 72, 26912695.CrossRefGoogle ScholarPubMed
Laskey, R. A., Honda, B. M., Mills, A. D. & Finch, J. T. (1978). Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, Lond. 275, 416420.CrossRefGoogle ScholarPubMed
Levitt, M. (1978). How many base-pairs per turn does DNA have in solution and in chromatin? Some theoretical calculations. Proc. natn. Acad. Sri., U.S.A. 75, 640644.CrossRefGoogle ScholarPubMed
Levy, B., Connor, W. & Dixon, G. H. (1979). A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as a major structural component. J. biol. Chem. 254, 609620.CrossRefGoogle Scholar
Levy-Wilson, B., Watson, D. C. & Dixon, G. H. (1979). Multi-acetylated forms of H4 are found in a putative transcriptionally competent chromatin fraction from trout testis. Nucl. Acids Res. 6, 259274.CrossRefGoogle Scholar
Lilley, D. M., Pardon, J. F. P. & Richards, B. M. (1977). Structural investigations of chromatin core protein by nuclear magnetic resonance. Biochemistry 16, 28532860CrossRefGoogle ScholarPubMed
Lohr, D., Tatchell, K. & Van Holde, K. E. (1979). On the occurrence of nucleosome phasing in chromatin Cell 12, 829836.CrossRefGoogle Scholar
Lutter, L. C. (1979). Precise location of DNase I cutting sites in the nucleosomal core by high resolution gel electrophoresis. Nucl. Acids Res. 6, 4156.CrossRefGoogle ScholarPubMed
Malchy, B. & Kaplan, H. (1974). Reactive properties of amino groups of histones in calf thymus chromatin. J. molec. Biol. 82, 537545.CrossRefGoogle ScholarPubMed
Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. II, 179246.CrossRefGoogle Scholar
Mansy, S., Engstrom, S. K. & Peticolas, W. L. (1976). Laser Raman identification of an interaction site on DNA for arginine containing histones in chromatin. Biochem. biophys. Res. Commun. 68, 12421247.CrossRefGoogle ScholarPubMed
Martinson, H. G. & True, R. J. (1979). On the mechanism of nucleosome unfolding. Biochemistry 18, 10891094.CrossRefGoogle ScholarPubMed
Martinson, H. G., True, R. J. & Bursch, J. B. E. (1979 a). Specific histonehistone contacts are ruptured when nucleosomes unfolds at low ionic strength. Biochemistry 18, 10821089.CrossRefGoogle ScholarPubMed
Martinson, H. G., True, R., Lau, C. K. & Mchrabian, M. (1979 b). Histone-histone interactions within chromatin. Preliminary location of multiple contact sites between histones 2A, 2B and 4. Biochemistry 18, 10751082.CrossRefGoogle ScholarPubMed
Mathew, C. G. P., Goodwin, G. H. & Johns, E. W. (1979). Studies on the association of the high mobility group non-histone chromatin proteins with isolated nucleosomes. Nucl. Acids Res. 6, 167179.CrossRefGoogle ScholarPubMed
McGhee, J. & Felsenfeld, G. (1979). Reaction of nucleosome DNA with dimethyl sulfate. Proc. natn. Acad. Sci., U.S.A. 76, 21332137.CrossRefGoogle ScholarPubMed
MćKnight, S. L. & Miller, O. L. JrElectron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell. 12, 795804.CrossRefGoogle Scholar
Melnikova, A. F., Zasedatelev, A. S., Kolchinsky, A. M., Gursky, G. V., Zhuze, A. L., Grochovsky, S. L. & Mirzabekov, A. D. (1975). Accessibility of the minor groove of DNA in chromatin to the binding of antibiotics netropsin and distamycin A. Mol. Biol. Rep. 2, 135142.CrossRefGoogle Scholar
Melnikova, A. F., Kolchinsky, A. M., Golovanov, E. I. & Mirzabekov, A. D. (1980). The length of nucleosomal repeat in the whole cells fixed with formaldehyde after freezing. Mol. Biol. (U.S.S.R.) 14, 549557.Google ScholarPubMed
Mirzabekov, A. D. & Melnikova, A. F.Localization of chromatin proteins within DNA grooves by methylation of chromatin with dimethylsulfate. Mol. Biol. Rep. 1, 385390CrossRefGoogle Scholar
Mirzabekov, A. D. & Rich, A. (1979). Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending. Proc. natn. Acad. Sci., U.S.A. 76, 11181121.CrossRefGoogle ScholarPubMed
Mirzabekov, A. D., San'ko, D. F., Kolchinsky, A. M. & Melnikova, A. F. (1977). Protein arrangement in the DNA grooves in chromatin and nucleoprotamine in vitro and in vivo revealed by methylation. Eur. J. Biochem. 75, 379389.CrossRefGoogle Scholar
Mirzabekov, A. D., Shick, V. V., Belyavsky, A. V. & Bavykin, S. G. (1978). Primary organization of nucleosome core particles of chromatin: sequence of histone arrangement along DNA. Proc. natn. Acad. Sci., U.S.A. 75, 41844188.CrossRefGoogle ScholarPubMed
Nelson, D. A., Perry, W. M. & Chalkley, R. (1978). Sensitivity of regions of chromatin containing hyperacetylated histones to DNase I. Biochem. biophys. Res. Commun. 82, 356363.CrossRefGoogle ScholarPubMed
Noll, M.. (1974). Internal structure of the chromatin subunit. Nucl. Acids. Res. I, 15731578.CrossRefGoogle Scholar
Noel, M. (1977). DNA folding in nucleosome. J. molec. Biol. 116, 4971.CrossRefGoogle Scholar
Noll, M. & Kornberg, R. D. (1977). Action of micrococcal nuclease on chromatin and location of histone HI. J. molec. Biol. 109, 393404.CrossRefGoogle Scholar
Olins, A. L. & Olins, D. F. (1974). Spheroid chromatin units (v−bodies) Science, N.Y. 183, 330334.CrossRefGoogle Scholar
Olins, A., Senior, M. B. & Olins, D. E. (1976). Ultrastructural features of chromatin-bodies. J. Cell Biol. 68, 787793.CrossRefGoogle Scholar
Olines, D. E., Bryan, P. N., Harrington, R. E., Hill, W. E. & Olins, A. L. (1977). Conformational states of chromatin-bodies induced by urea. Nucl. Acids Res. 4, 19111931.CrossRefGoogle Scholar
Osheim, Y. N., Martin, K. & Miller, O. L. (1978). Morphology of active and inactive chromatin in Xenopu lacvis oocytes. J. Cell. Biol. 79, 126 a.Google Scholar
Oudet, P., Spadafora, C. & Chambon, P. (1978). Nucleosome structure. II. Structure of SV-40 minichromosome and electron microscopic evidence for reversible transitions of the nucleosome structure. Cold Spring. Harb. Symp. quant. Biol. 42, 301312.CrossRefGoogle ScholarPubMed
Palter, K. B. & Alberts, B. M. (1979). The use of DNA-cellulose for analyzing histone-DNA interactions. Discovery of nucleosome-like histone binding to single-stranded DNA. J. biol. Chem. 254, 1116011169.CrossRefGoogle ScholarPubMed
Palter, K. B., Foe, V. E. & Alberts, B. M. (1979). Evidence for the formation of nucleosome-like histone complexes on single-stranded DNA. Cell 18, 451467.CrossRefGoogle ScholarPubMed
Pardon, J. F., Worcester, D. L., Wooley, J. C., Tatchell, K., Van Holde, K. E. & Richards, B. M. (1975). Low angle neutron scattering from chromatin subunit particles. Nucl. Acids Res. 2, 21632176.CrossRefGoogle ScholarPubMed
Pardon, J. F., Worcester, D. L., Wooley, J. C., Cotter, R. I., Lilley, D. M. J. & Richards, B. M. (1977). The structure of the chromatin core particles in solution. Nucl. Acids Res. 4, 31993214.CrossRefGoogle ScholarPubMed
Pederson, T. (1978). Chromatin structure and gene transcription: nucleosome permit a new synthesis. Int. Rev. Cytol. 55, 121.CrossRefGoogle ScholarPubMed
Peters, E. H., Levy-Wilson, B. & Dixon, G. H. (1979). Evidence for location of High Mobility Group Protein T in the internucleosomal linker regions of trout testis chromatin. J. biol. Chem. 254, 33583361.CrossRefGoogle Scholar
Pospelov, V. A., Svetlikova, S. B. & Vorob'ev, V. I. (1977). Structure of chromatin subunits: an endonuclease Serratia marcescens study. Nucl. Acids Res. 4, 32673279.CrossRefGoogle ScholarPubMed
Prunell, A., Kornberg, R. D., Lutter, L., Klug, A., Levitt, M. & Crick, F. H. C. (1979) Periodicity of deoxyribonuclease I digestion of chromatin. Science, N.Y. 204, 855858.CrossRefGoogle ScholarPubMed
Riley, D. & Weintraub, H. (1978). Nucleosomal DNA is digested to repeat of io bases by exonuclease III. Cell 13, 281293.CrossRefGoogle Scholar
Rill, R. & Van Holde, K. E. (1973). Properties of nuclease-resistant fragments of calf thymus chromatin. J. biol. Chem. 248, 10801081.CrossRefGoogle ScholarPubMed
Ring, D. & Cole, R. D. (1979) Chemical crosslinking of HI histone to the nucleosomal histones. J. biol. Chem. 254, 1168811695.CrossRefGoogle Scholar
Ruiz-Carrillo, A., Jorcano, J. L., Edler, G. & Lurz, R. (1979). In vitro core particle and nucleosome assembly at physiological ionic strength. Proc. natn. Acad. Sci., U.S.A. 76, 32843288.CrossRefGoogle ScholarPubMed
Seligy, V. L. & Poon, N. H. (1978). Alternation in nucleosome structure induced by thermal denaturation. Nucl. Acids Res. 5, 22332252.CrossRefGoogle Scholar
Shick, V. V., Belyavsky, A. V., Bavykin, S. G. & Mirzabekov, A. D. (1980). Primary organization of the nucleosome core particles. Sequential arrangement of histones along DNA. J. molec. Biol. 139, 491517.CrossRefGoogle ScholarPubMed
Simpson, R. T. (1978 a). Structure of chromatin containing extensively acetylated H3 and H4 histones. Cell. 13, 691699.CrossRefGoogle Scholar
Simpson, R. T. (1978 b). Structure of chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17, 55245531.CrossRefGoogle ScholarPubMed
Simpson, R. T. (1979). Mechanism of a reversible, thermally induced conformational change in chromatin core particles. J. biol. Chem. 254, 1012310127.CrossRefGoogle ScholarPubMed
Simpson, R. T. & Whitlick, J. P. Jr (1976). Mapping DNase I susceptible sites in nucleosomes labelled at 5'-ends. Cell 9, 347353.CrossRefGoogle Scholar
Sollner-Webb, B. & Felsenfeld, C. (1975). A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry 14, 29152920.CrossRefGoogle ScholarPubMed
Sollner-Webb, B., Camerini-Otero, R. D. & Felsenfeld, G. (1976). Chromatin structure as probed by nucleases and proteases: evidence for the central role of histone H3 and H4. Cell 9, 179193.CrossRefGoogle ScholarPubMed
Sollner-Webb, B., Melchior, W. Jr & Felsenfeld, G. (1978). DNase I, DNase II and staphylococcal nuclease cut at different, yet symmetrically located sites in the nucleosome core. Cell 14, 611627.CrossRefGoogle Scholar
Spadafora, C., Oudet, P. & Chambon, P. (1979). Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur. J. Biochem. 100, 225235.CrossRefGoogle ScholarPubMed
Stein, A. (1979). DNA folding by histones: the kinetics of chromatin core particle reassembly and the interaction of nucleosome with histones. J. molec. Biol. 130, 103134.CrossRefGoogle ScholarPubMed
Stein, A., Bina-Stein, M. & Simpson, R. T. (1977). Crosslinked histone octamer as a model of the nucleosome core. Proc. natn. Acad. Sci., U.S.A. 74, 27802784.CrossRefGoogle Scholar
Stein, A., Whitlock, J. P. & Bina, M. (1979). Acidic polypeptides assemble both histones and chromatin in vitro physiological ionic strength. Proc. natn. Acad. Sci., U.S.A. 76, 50005004.CrossRefGoogle ScholarPubMed
Steinmetz, M., Streeck, R. & Zachau, H. G. (1978). Closely spaced nucleosome core in reconstituted histone-DNA complexes and histone HI depleted chromatin. Eur. J. Biochem. 83, 615628.CrossRefGoogle Scholar
Stubbs, G., Warren, S. & Holmes, K. (1977). Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature, Lond. 267, 216221.CrossRefGoogle ScholarPubMed
Suau, P., Kneale, G. G., Braddock, G. W., Baldwin, J. P. & Bradbury, E. M. (1977) A low resolution model for the chromatin core article by neutron scattering. Nucl. Acids Res. 4, 37693786.CrossRefGoogle ScholarPubMed
Suda, M. & Iwai, K. (1979). Identification of suberimidate crosslinking sites in four histone sequences in HI -depleted chromatin. J. Biochem. 86, 16591670.CrossRefGoogle Scholar
Sussman, J. L. & Trifonov, E. N. (1978). Possibility of non-kinked packing of DNA in chromatin. Proc. natn. Acad. Sci., U.S.A. 75, 103107.CrossRefGoogle Scholar
Tack, L. O. & Simpson, R. T. (1979). Location of histone lysyl residues modified by in vitro acelylation of chromatin. Biochemistry 18, 31103118.CrossRefGoogle Scholar
Tatchell, K. & Van Holde, K. E. (1978). Compact oligomers and nucleosome phasing. Proc. natn. Acad. Sci., U.S.A. 75, 35833587.CrossRefGoogle Scholar
Thoma, F., Koller, T. & Klug, A. (1979). Involvement of Histone HI in organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403428.CrossRefGoogle Scholar
Thomas, J. O. & Oudet, P. (1979). Complex of the arginine-rich histone tetramer (H3)2 (H4)2 with negatively supercoiled DNA: electron microscopy and chemical crosslinking. Nucl. Acids Res. 7, 611623.CrossRefGoogle Scholar
Thomaś, G. J. Jr, Prescott, E. & Olins, D. E. (1977). Secondary structure of histone and DNA in chromatin. Science, N.Y. 197, 385388.CrossRefGoogle ScholarPubMed
Todd, R. D. & Garrard, W. T. (1977). Two-dimensional electrophoretic analysis of polynucleosomes. J. biol. Chem. 252, 47294738.CrossRefGoogle ScholarPubMed
Trendelenburg, M. F. & Gurdon, J. B. (1978). Transcription of cloned Xenopus ribosomal genes visualized after injection into oocyte nuclei. Nature, Lond. 276, 292294.CrossRefGoogle ScholarPubMed
Trifonov, E. (1978). The helical model of the nucleosome core. Nucl. Acids Res. 5, 13711380.CrossRefGoogle ScholarPubMed
Trifonov, E. N. & Bettecken, T. (1979). Noninteger pitch and nuclease sensitivity of chromatin DNA. Biochemistry 18, 454456.CrossRefGoogle ScholarPubMed
Tsanev, R. & Petrov, P. (1976). The substructure of chromatin and its variations as revealed by electron microscopy. J. Micrs., Biol. Cell 27, 1118.Google Scholar
Varshavsky, A. J. & Bakayev, V. V. (1975). Studies on chromatin. IV. Evidence for toroidal shape of chromatin subunits. Mol. Biol. Rep. 2, 247254.CrossRefGoogle Scholar
Varshavsky, A. J., Bakayev, V. V. & Georgiev, G. P. (1976). Heterogeneity of chromatin subunits and location of histone Hi. Nucl. Acids Res. 3, 477492.CrossRefGoogle Scholar
Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. (1978). Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histone H3 and H4 and increase DNase I sensitivity of associated DNA sequences. Proc. natn. Acad. Sci., U.S.A. 75, 22392243.CrossRefGoogle Scholar
Villeponteaux, B., Laskey, L. & Harary, I. (1978). Lysine-rich histones and selective digestion of the globin gene in avian red blood cells. Biochemistry 17, 55325536.CrossRefGoogle ScholarPubMed
Wang, J. C. (1979). Helical repeat of DNA in solution. Proc. natn. Acad. Sci., U.S.A. 76, 200203.CrossRefGoogle ScholarPubMed
Wasylyk, B., Oudet, P. & Chambon, P. (1979). Preferential in vitro assembly of nucleosome cores on some AT-rich regions of SV-40 DNA. Nucl. Acids Res. 7, 705715.CrossRefGoogle Scholar
Weintraub, H. & Groudine, M. (1976). Chromosomal subunits in active genes have an altered conformation. Science, N. Y. 193, 848856.CrossRefGoogle Scholar
Weintraub, H., Palter, K. & Van Lente, F. (1975). Histones H2A, H2B, H3, and H4 form a tetrameric complex in solution of high salt. Cell 6, 85110.CrossRefGoogle Scholar
Weisbrod, S., Groudine, M. & Weintraub, H. (1980). Interaction of HMG 14 and 17 with actively transcribed genes. Cell 19, 289301.CrossRefGoogle ScholarPubMed
Weischet, W. O. (1979). On the de novo formation of compact oligonucleosomes at high ionic strength. Evidence for nucleosomal sliding in high salt. Nucl. Acids Res. 7, 291304.CrossRefGoogle Scholar
Weischet, W. O., Tatchell, K., Van Holde, K. E. & Klump, H. (1978). Thermal denaturation of nucleosome core particles. Nucl. Acids Res. 5, 139160.CrossRefGoogle Scholar
Weischet, W. O., Allen, J. R., Reidel, G. & Van Holde, K. E. (1979). The effect of salt concentration and HI depletion on the digestion of calf thymus chromatin by micrococcal nuclease. Nucl. Acids Res. 6, 18431862.CrossRefGoogle Scholar
Whitlock, J. P. & Simpson, R. T. (1976). Removal of histone HI exposes a fifty base pair DNA fragment between nucleosomes. Biochemistry 15, 33073311.CrossRefGoogle Scholar
Whitlock, J. P. Jr, Rushizki, G. W. & Simpson, R. T. (1977). DNase sensitive sites in nucleosomes. Their relative susceptibilities depends on nuclease used, J. biol. Chem. 252, 30033006.CrossRefGoogle Scholar
Woodcock, C. L. F. & Frado, L. L. Y. (1978). Ultrastructure of chromatin subunits during unfolding, histone depletion, and reconstitution. Cold Spring Harb. Symp. quant. Biol. 42, 4355.CrossRefGoogle ScholarPubMed
Wu, H. M., Dattagupta, N., Hogan, M. & Crothers, D. M. (1979). Structural changes of nucleosomes in law-salt concentrations. Biochemistry 18, 39603965.CrossRefGoogle ScholarPubMed
Yaneva, M. & Dessev, G. (1976). Persistence of the ten-nucleotide repeat in chromatin unfolded in urea, as revealed by digestion with deoxyribonuclease I. Nucl. Acids Res. 3, 17611767.CrossRefGoogle Scholar
Zayetz, V. W., Bavykin, S. G., Karpov, V. L., Kolesnick, B. & Mirzabekov, A. D. (1980). (Manuscript in preparation.)Google Scholar
Zhurkin, V. B., Lysov, Y. P. & Ivanov, V. I. (1979). Anisotropic flexibility of DNA and the nucleosome structure. Nucl. Acids Res. 6, 10811096.CrossRefGoogle Scholar