Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T13:13:52.238Z Has data issue: false hasContentIssue false

Charge regulation in biomolecular solution

Published online by Cambridge University Press:  23 July 2013

Mikael Lund*
Affiliation:
Department of Theoretical Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
Bo Jönsson
Affiliation:
Department of Theoretical Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
*
*Author for correspondence: Mikael Lund, Department of Theoretical Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden. Tel: +46 46 222 3167; Fax: +46 46 222 8648; E-mail: [email protected]

Abstract

Proteins and other biomolecules contain acidic and basic titratable groups that give rise to intricate charge distributions and control electrostatic interactions. ‘Charge regulation’ concerns how the proton equilibria of these sites are perturbed when approached by alien molecular matter such as other proteins, surfaces and membranes, DNA, polyelectrolytes etc. Importantly, this perturbation generates a charge response that leads to attractive intermolecular interactions that can be conveniently described by a single molecular property – the charge capacitance. The capacitance quantifies molecular charge fluctuations, i.e. it is the variance of the mean charge and is an intrinsic property on par with the net charge and the dipole moment. It directly enters the free energy expression for intermolecular interactions and can be obtained experimentally from the derivative of the titration curve or theoretically from simulations. In this review, we focus on the capacitance concept as a predictive parameter for charge regulation and demonstrate how it can be used to estimate the interaction of a protein with other proteins, polyelectrolytes, membranes as well as with ligands.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, B., Anandakrishnan, R., Ruscio, J. Z. & Onufriev, A. V. (2010). Statistics and physical origins of pK and ionization state changes upon protein–ligand binding. Biophysics Journal 98, 872880.CrossRefGoogle ScholarPubMed
Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & Mccammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences, USA 98, 1003710041.CrossRefGoogle ScholarPubMed
Biesheuvel, P. M. (2001). Implications of the charge regulation model for the interaction of hydrophilic surfaces in water. Langmuir 17, 35533556.CrossRefGoogle Scholar
Biesheuvel, P. & Wittemann, A. (2005). A modified box model including charge regulation for protein adsorption in a spherical polyelectrolyte brush. Journal of Physical Chemistry B 109, 42094214.CrossRefGoogle Scholar
Biesheuvel, P., Van Der Veen, M. & Norde, W. (2005). A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica. Journal of Physical Chemistry B 109, 41724180.CrossRefGoogle Scholar
Boon, N. & Van Roij, R. (2011). Charge regulation and ionic screening of patchy surfaces. Journal of Chemical Physics 134, 054706.CrossRefGoogle ScholarPubMed
Borkovec, M. & Behrens, S. H. (2008). Electrostatic double layer forces in the case of extreme charge regulation. Journal of Physical Chemistry. B 112, 1079510799.CrossRefGoogle ScholarPubMed
Carlsson, F., Linse, P. & Malmsten, M. (2001). Monte Carlo simulations of polyelectrolyte–protein complexation. Journal of Physical Chemistry B 105, 90409049.CrossRefGoogle Scholar
Carnie, S. (1993). Interaction free energy between plates with charge regulation: a linearized model. Journal of Colloid and Interface Science 161, 260264.CrossRefGoogle Scholar
Chan, D. & Pashley, R. (1980). A simple algorithm for the calculation of the electrostatic repulsion between identical charged surfaces in electrolyte. Journal of Colloid and Interface Science 77, 283285.CrossRefGoogle Scholar
Da Silva, F. L. B., Lund, M., Jönsson, B. & Åkesson, T. (2006). On the complexation of proteins and polyelectrolytes. Journal of Physical Chemistry B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical 110, 44594464.Google ScholarPubMed
Dan, N. (2002). Interactions between charge-regulating surface layers. Langmuir 18, 35243527.CrossRefGoogle Scholar
De Kruif, C. G., Weinbreck, F. & De Vries, R. (2004). Complex coacervation of proteins and anionic polysaccharides. Current Opinion Colloid Interface Science 9, 340349.CrossRefGoogle Scholar
De Vos, W. M., Leermakers, F. A. M., De Keizer, A., Cohen Stuart, M. A. & Kleijn, J. M. (2010). Field theoretical analysis of driving forces for the uptake of proteins by like-charged polyelectrolyte brushes: effects of charge regulation and patchiness. Langmuir 26, 249259.CrossRefGoogle ScholarPubMed
De Vries, R. (2004). Monte Carlo simulation of flexible polyanions complexing with whey proteins at their isoelectric point. Journal of Chemical Physics 120, 34753481.CrossRefGoogle ScholarPubMed
De Vries, R., Weinbreck, F. & Dekruif, C. G. (2003). Theory of polyelectrolyte adsorption on heterogeneously charged surfaces applied to solute protein-polyelectrolyte complexes. Journal of Chemical Physics 118, 46494659.CrossRefGoogle Scholar
Di Cera, E. (1991). Stochastic linkage: effect of random fluctuations on a two-state process. Journal of Chemical Physics 95, 50825086.CrossRefGoogle Scholar
Doublier, J. L., Garnier, C., Renard, D. & Sanchez, C. (2000). Protein-polysaccharide interactions. Current Opinion in Colloid and Interface Science 5, 202214.CrossRefGoogle Scholar
Elcock, A. & Mccammon, J. (2001). Calculation of weak protein–protein interactions: the pH dependence of the second virial coefficient. Biophysics Journal 80, 613625.CrossRefGoogle Scholar
Fornés, J. A. (2000). The electrical capacitance of small systems. Journal of Colloid and Interface Science 226, 172179.CrossRefGoogle ScholarPubMed
Girard, M., Turgeon, S. L. & Gauthier, S. F. (2003). Quantification of the interactions between β-lactoglobulin and pectin through capillary electrophoresis analysis. Journal of Agricultural and Food Chemistry 51, 60436049.CrossRefGoogle ScholarPubMed
Gitlin, I., Mayer, M. & Whitesides, G. (2003). Significance of charge regulation in the analysis of protein charge ladders. Journal of Physical Chemistry B 107, 14661472.CrossRefGoogle Scholar
Gitlin, I., Carbeck, J. D. & Whitesides, G. M. (2006). Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angewandte Chemie (International ed. in English) 45, 30223060.CrossRefGoogle ScholarPubMed
Gong, P., Genzer, J. & Szleifer, I. (2007). Phase behavior and charge regulation of weak polyelectrolyte grafted layers. Physical Review Letters 98, 018203.CrossRefGoogle ScholarPubMed
Grant, M. (2001). Nonuniform charge effects in protein–protein interactions. Journal of Physical Chemistry B 105, 28582863.CrossRefGoogle Scholar
Grymonpré, K. R., Staggemeier, B. A., Dubin, P. L. & Mattison, K. W. (2001). Identification by integrated computer modeling and light scattering studies of an electrostatic serum albumin-hyaluronic acid binding site. Biomacromolecules 2, 422429.CrossRefGoogle ScholarPubMed
Hallberg, R. & Dubin, P. L. (1998). Effect of pH on the binding of β-lactoglobulin to sodium polystyrenesulfonate. Journal of Physical Chemistry. B 102, 86298633.CrossRefGoogle Scholar
Hanakam, F., Gerisch, G., Lotz, S., Alt, T. & Seelig, A. (1996). Binding of hisactophilin I and II to lipid membranes is controlled by a pH-dependent myristoyl-histidine switch. Biochemistry 35, 1103611044.CrossRefGoogle ScholarPubMed
Hartvig, R. A., Van De Weert, M., Ostergaard, J., Jorgensen, L. & Jensen, H. (2011). Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27, 26342643.CrossRefGoogle ScholarPubMed
Hattori, T., Hallberg, R. & Dubin, P. L. (2000). Langmuir 16, 97389743.CrossRefGoogle Scholar
Hill, T. (1956). An Introduction of Statistical Thermodynamics. New York: McGraw-Hill.Google Scholar
Hubbell, J. A. (2003). Enhancing drug function. Science 300, 595596.CrossRefGoogle ScholarPubMed
Jiang, G., Woo, B. H., Kangb, F., Singhb, J. & Deluca, P. P. (2002). Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. Journal of Controlled Release: Official Journal of the Controlled Release Society 79, 137145.CrossRefGoogle ScholarPubMed
Keh, H. J. & Li, Y. L. (2007). Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Langmuir 23, 1061–72.CrossRefGoogle Scholar
Kirkwood, J. & Shumaker, J. B. (1952a). Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proceedings of the National Academy of Sciences, USA 38, 863871.CrossRefGoogle ScholarPubMed
Kirkwood, J. & Shumaker, J. B. (1952b). The influence of dipole moment fluctuations on the dielectric increment of proteins in solution. Proceedings of the National Academy of Sciences, USA 38, 855862.CrossRefGoogle ScholarPubMed
Kubo, R. (1966). The fluctuation–dissipation theorem. Reports on Progress in Physics 29, 255284.CrossRefGoogle Scholar
Kurut, A. & Lund, M. (2012). Solution electrostatics beyond pH: a coarse grained approach to ion specific interactions between macromolecules. Faraday Discuss., 2013(160), 271278 (DOI: 10.1039/C2FD20073B).Google Scholar
Linderstrøm-Lang, K. (1924). Om proteinstoffernes ionisation. Comptes Rendus des Travaux du Laboratorie Carlsberg 15, 129.Google Scholar
Linse, S., Helmersson, A. & Forsen, S. (1991). Calcium binding to calmodulin and its globular domains. Journal of Biological Chemistry 266, 80508054.CrossRefGoogle ScholarPubMed
Lund, M. (2010). Electrostatic chameleons in biological systems. Journal of the American Chemical Society 132, 1733717339.CrossRefGoogle ScholarPubMed
Lund, M. & Jönsson, B. (2005). On the charge regulation of proteins. Biochemistry 44, 57225727.CrossRefGoogle ScholarPubMed
Lund, M., Åkesson, T. & Jönsson, B. (2005). Enhanced protein adsorption due to charge regulation. Langmuir 21, 83858388.CrossRefGoogle ScholarPubMed
Mason, A. C. & Jensen, J. H. (2008). Protein–protein binding is often associated with changes in protonation state. Proteins 71, 8191.CrossRefGoogle ScholarPubMed
Menon, M. & Zydney, A. (2000). Determination of effective protein charge by capillary electrophoresis: effects of charge regulation in the analysis of charge ladders. Analytical Chemistry 72, 57145717.CrossRefGoogle ScholarPubMed
Ninham, B. W. & Parsegian, V. A. (1971). Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. Journal of Theoretical Biology 31, 405428.CrossRefGoogle ScholarPubMed
Phillies, G. (1974). Excess chemical potential of dilute-solutions of spherical polyelectrolytes. Journal of Chemical Physics 60, 27212731.CrossRefGoogle Scholar
Popa, I., Sinha, P., Finessi, M., Maroni, P., Papastavrou, G. & Borkovec, M. (2010). Importance of charge regulation in attractive double-layer forces between dissimilar surfaces. Physical Review Letters 104, 228301.CrossRefGoogle ScholarPubMed
Sassi, A. P., Beltran, S., Hooper, H. H., Blanch, H. W., Prausnitz, J. & Siegel, R. A. (1992). Monte Carlo simulations of hydrophobic weak polyelectrolytes: titration properties and pH-induced structural transitions for polymers containing weak electrolytes. Journal of Chemical Physics 97, 8767.CrossRefGoogle Scholar
Schmitt, C., Sanchez, C., Desobry-Banon, S. & Hardy, J. (1998). Structure and technofunctional properties of protein–polysaccharide complexes: a review. Critical Reviews in Food Science and Nutrition 38, 689753.CrossRefGoogle ScholarPubMed
Seyrek, E., Dubin, P. L., Tribet, C. & Gamble, E. A. (2003). Ionic strength dependence of proteins–polyelectrolyte interactions. Biomacromolecules 4, 273282.CrossRefGoogle ScholarPubMed
Sharma, U., Negin, R. & Carbeck, J. (2003). Effects of cooperativity in proton binding on the net charge of proteins in charge ladders. Journal of Physical Chemistry B 107, 46534666.CrossRefGoogle Scholar
Shen, H. & Frey, D. (2005). Effect of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins. Journal of Chromatography A 1079, 92104.CrossRefGoogle ScholarPubMed
Shubin, V. & Linse, P. (1997). Self-consistent-field modeling of polyelectrolyte adsorption on charge-regulating surfaces. Macromolecules 30, 59445952.CrossRefGoogle Scholar
Simon, M., Wittmar, M., Bakowsky, U. & Kissel, T. (2004). Self-assembling nanocomplexes from insulin and water-soluble branched polyesters, poly[(vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(l-lactic acid): a novel carrier for transmucosal delivery of peptides. Bioconjugate Chemistry 15, 841849.CrossRefGoogle ScholarPubMed
Ståhlberg, J. & Jönsson, B. (1996). Influence of charge regulation in electrostatic interaction chromatography of proteins. Analytical Chemistry 68, 15361544.CrossRefGoogle ScholarPubMed
Sukhishvili, S. A. & Granick, S. (2003). Simple interpretation of ionization and helixcoil stability shift when a polyelectrolyte adsorbs. Langmuir 19, 19801983.CrossRefGoogle Scholar
Svensson, B., Jönsson, B., Thulin, E. & Woodward, C. E. (1993). Binding of calcium to calmodulin and its tryptic fragments: theory and experiment. Biochemistry 32, 28282834.CrossRefGoogle ScholarPubMed
Tanford, C. (1961). Physical Chemistry of Macromolecules. New York: John Wiley & Sons.Google Scholar
Timasheff, S., Dintzis, H., Kirkwood, J. & Coleman, B. (1955). Studies of molecular interaction in isoionic protein solutions by light-scattering. Proceedings of the National Academy of Sciences, USA 41, 710714.CrossRefGoogle ScholarPubMed
Tsao, H.-K. (2000). The electrostatic interaction of an assemblage of charges with a charged surface: the charge-regulation effect. Langmuir 16, 72007209.CrossRefGoogle Scholar
Ullner, M., Jönsson, B. & Widmark, P.-O. (1994). Conformational properties and apparent dissociation constants of titrating polyelectrolytes: Monte Carlo simulation and scaling arguments. Journal of Chemical Physics 100, 3365.CrossRefGoogle Scholar
Wyman, J. & Gill, S. J. (1990). Binding and Linkage: Functional Chemistry of Biological Macromolecules. Mill Valley: University Science Books.Google Scholar
Zancong, S. & Mitragotri, S. (2002). Intestinal patches for oral drug delivery. Pharmacuetical Research 19, 391395.Google Scholar