Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:11:48.242Z Has data issue: false hasContentIssue false

Alfvén Waves in Dusty Interstellar Clouds

Published online by Cambridge University Press:  16 May 2016

N. F. Cramer
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, [email protected]
S. V. Vladimirov
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dust particles in a plasma can be higWy charged, and can carry a proportion of the negative charge of the plasma. Even if this proportion is quite small, as in interstellar dusty clouds, it can have a large effect on hydromagnetic Alfvén waves propagating at frequencies well below the ion–cyclotron frequency. In particular, the right-hand circularly polarised mode experiences a cutoff due to the presence of the dust. We generalise previous work on Alfvén waves in dusty interstellar plasmas by considering the general dispersion relation for waves propagating at an arbitrary angle with respect to the magnetic field. Wave energy propagating at oblique angles to the magnetic field in an increasing density gradient can be very efficiently damped by the Alfvén resonance absorption process in a dusty plasma, and we consider this damping mechanism for waves in interstellar clouds.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Arons, J., & Max, C. E. 1975, ApJ, 196, L77Google Scholar
Balsara, D. S. 1996, ApJ, 465, 775 CrossRefGoogle Scholar
Baynham, A. C., & Boardman, A. D. 1971, Plasma Effects in Semiconductors: Helicon and Alfvén Waves (London: Taylor and Francis)Google Scholar
Birk, G. T., Kopp, A., & Shukla, P. K. 1996, Phys. Plasmas, 3,3564CrossRefGoogle Scholar
Cramer, N. F., & Vladimirov, S. V. 1996, Phys. Scripta, 53, 586 Google Scholar
Goertz, C. K. 1989, Rev. Geophys., 27, 271 CrossRefGoogle Scholar
Hasegawa, A., & Chen, L. 1976, Phys. Fluids, 19, 1924 CrossRefGoogle Scholar
Havnes, O., Hartquist, T. W., & Pilipp, W. 1989, A&A, 217, L13Google Scholar
Ionson, J. A. 1978, ApJ, 226, 650 CrossRefGoogle Scholar
Mendis, D. A., & Rosenberg, M. 1992, IEEE Trans. Plasma Sci., 20, 929 CrossRefGoogle Scholar
Mendis, D. A., & Rosenberg, M. 1994, ARA&A, 32, 419 Google Scholar
Pilipp, W., & Hartquist, T. W. 1994, MNRAS, 267, 801 Google Scholar
Pilipp, W., Hartquist, T. W., Havnes, O., & Morfill, G. E. 1987, ApJ, 314, 341 Google Scholar
Rao, N. N. 1993, J. Plasma Phys., 49, 375 CrossRefGoogle Scholar
Shukla, P. K. 1992, Phys. Scripta, 45, 504 CrossRefGoogle Scholar
Shukla, P. K., & Rahman, H. U. 1996, Phys. Plasmas, 3, 430 CrossRefGoogle Scholar
Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium (New York: John Wiley), p. 168 Google Scholar
Tsytovich, V. N., & Havnes, O. 1993, Comments Plasma Phys. Contr. Fusion, 15, 267 Google Scholar
Vladimirov, S. V. 1994a, Phys. Plasmas, 1, 2762 Google Scholar
Vladimirov, S. V. 1994b, Phys. Rev. E, 49, R997; Phys. Rev. E 50, 1422 Google Scholar
Vladimirov, S. V., & Cramer, N. F. 1996, Phys. Rev. E,54 6762 CrossRefGoogle Scholar