Published online by Cambridge University Press: 25 April 2016
For many pulsars the integrated or mean pulse profile is highly polarized. Generally linear polarization dominates over circular and there is a continuous variation of position angle through the profile (e.g. Manchester 1971). In most models for the emission process the angle of polarization is related to the (projected) direction of magnetic fields in the source region. Several of the observed properties of pulsars, for example, the mode-changing phenomenon (Backer 1970) and the different spectral index of different components of the intergrated profile (Manchester 1971), suggest that different parts of the integrated profile are emitted in different (though closely related) parts of the source. The different observed position angles across the integrated profile would then result from different projected magnetic field directions in these different parts of the source. For many pulsars the observed position angle variations are closely represented by a path through a radial set of projected field directions such as would be obtained in the vicinity of a magnetic pole (cf. Radhakrishnan and Cooke 1969).