Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T18:03:32.218Z Has data issue: false hasContentIssue false

Intensity correlation functions of microwave maser sources

Published online by Cambridge University Press:  04 April 2022

A. V. Shepelev*
Affiliation:
I.M. Gubkin Russian State University, Moscow, Russia and Scientific and Technological Centre of Unique Instrumentation of the Russian Academy of Sciences, Moscow, Russia
*
Corresponding author: A. V. Shepelev, email: [email protected]

Abstract

Astrophysical sources of microwave radiation with extremely high spectral brightness are interpreted as masers. But by itself, the information about high brightness of radiation does not make it possible to establish whether the radiation is thermal or maser. This can be determined only on the basis of the analysis of high-order correlation functions. A possible measurement procedure for the second-order autocorrelation function (the bunching parameter) for these sources is proposed.

Keywords

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendat, J. S., & Piersol, A. G. 2010, Random Data: Analysis and Measurement Procedures (New York: John Wiley and Sons). doi: 10.1002/9781118032428 Google Scholar
Bij, A., et al. 2021, ApJ, 920, 38. doi.org/10.3847/1538-4357/ac1589 Google Scholar
Clegg, A., & Cordes, J. 1991, ApJ, 374, 150. doi: 10.1086/170105 Google Scholar
Desmurs, J. E., Baudry, A., Wilson, T. L., Cohen, R. J., & Tofani, G. 1998, A&A, 334, 1085. doi: 1998A&A...340.521D Google Scholar
Dinh-V-Trung. 2009, MNRAS, 396, 2319. doi.org/10.1111/j.1365-2966.2009.14901.x Google Scholar
Einstein, A. 1909, Phys. Zs., 10, 185Google Scholar
Etoka, S., Blaszkiewicz, L., Szymczak, M., & Le Squeren, A. M. 2001, A&A, 378, 522. doi: 10.1051/0004-6361:20011184 Google Scholar
Evans, N. J., Hills, R. E., Rydbeck, O. E., & Kollberg, E. 1972, PhyRvA, 6, 1643. doi: 10.1103/PhysRevA.6.1643 CrossRefGoogle Scholar
Fish, V. L., Brisken, W. F., & Sjouwerman, L. O. 2006, ApJ, 647, 418. doi: 10.1086/505420 Google Scholar
Foellmi, C. 2009, A&A, 507, 1719. doi: 10.1051/0004-6361/200911739 CrossRefGoogle Scholar
Gabor, D. 1946, J IEEL, 93, pt 3, 429Google Scholar
Gray, M. D., & Bewley, S. L. 2003, MNRAS, 344, 439. doi: 10.1046/j.1365-8711.2003.06834.x Google Scholar
Hirata, Ch ., & McQuinn, M. 2014, MNRAS, 440, 3613. doi: 10.1093/mnras/stu509 CrossRefGoogle Scholar
Klauder, J. R., & Sudarshan, E. C. G. 1968, Fundamentals of Quantum Optics (New York, Amsterdam: W.A. Benjamin, inc.)Google Scholar
Klyshko, D. N. 2011, Physical Foundations of Quantum Electronics (World Scientific Publishing Co.)Google Scholar
Lekht, E. E. 2000, A&AS Suppl. Ser., 141, 185. doi: 10.1051/aas:2000118 Google Scholar
Mandel, L., & Wolf, E. 1995, Optical Coherence and Quantum Optics (UK: Cambridge University Press). http://dx.doi.org/10.1017/CBO9781139644105 Google Scholar
Moscadelli, L., Menten, K. M., Walmsley, C. M., & Raid, M. J. 2003, ApJ, 583, 776. doi: 10.1086/345502 CrossRefGoogle Scholar
Nimmo, K., et al. 2021. arXiv:2105.11446v2 Google Scholar
Patoka, O. et al. 2021, A&A, 652, id.A17. doi: 10.1051/0004-6361/202037623 CrossRefGoogle Scholar
Scully, M. O., & Zubairy, M. S. 1997, Quantum Optics (UK: Cambridge University Press). http://dx.doi.org/10.1017/CBO9780511813993 Google Scholar
Shepelev, A. V. 2007, MNRAS, 378, 753. doi: 10.1111/j.1365-2966.2007.11824.x CrossRefGoogle Scholar