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Abstract
Astrophysical sources of microwave radiation with extremely high spectral brightness are interpreted asmasers. But by itself, the information
about high brightness of radiation does not make it possible to establish whether the radiation is thermal or maser. This can be determined
only on the basis of the analysis of high-order correlation functions. A possible measurement procedure for the second-order autocorrelation
function (the bunching parameter) for these sources is proposed.
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1. Introduction

Astrophysical sources of microwave radiation with extremely high
spectral brightness/temperature (compact structures in certain
star-formation regions, compact structures in spreading cold stel-
lar mantles, structures in the atmospheres of Mars and Venus
radiating at vibration transitions of CO2 molecules, etc.) are inter-
preted as astrophysical masers. The attribution of these astrophys-
ical sources as masers is mainly based on their high brightness.
However, despite certain successes, the maser model of these
sources has unresolved difficulties. In particular, pumping mech-
anisms that ensure that the lasing threshold is exceeded are still
being discussed; there is no good explanation for the periodicity
of radiation, which ranges fromminutes to tens of years. The most
difficult thing to explain is that the correlation between bright-
ness and linewidth is observed quite rarely. This correlation is
an important characteristic of all lasers, but mostly not observed
(Desmurs et al. 1998; Lekht 1999; Etoka et al. 2001; Fish, Brisken,
& Sjouwerman. 2006; Moscadelli et al. 2003). In addition, the huge
number of maser sources in space is amazing, while obtaining it in
the laboratory requires significant efforts.

In addition to maser sources, there is a number of other astro-
physical sources of intense radiation. These are, for example,
synchrotron radiation, radiation of quasars, radiation as a result
of Compton back-scattering, etc.; their temperatures can be very
high. And a question appears: is the mechanism of the stimulated
emission of radiation unique for providing the extremely high
brightness of radiation? In particular, radiation in the radiofre-
quency range resulting from luminescence can cause a high,
up to 1011–1012 K, radiation temperature of objects traditionally
considered as astrophysical masers (Shepelev 2007).

By itself, the high temperature/brightness of the radiation does
not make it possible to establish whether the radiation is ther-
mal or maser; this can be established on the basis of measuring
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the statistical properties of high-order correlation functions. Quite
a number of works are devoted to the problem of research and
analysis of high-order correlation functions for radiation from
astrophysical objects (see, for example, Foellmi 2009; Hirata &
McQuin 2014). When measuring the statistical characteristics of
astrophysical masers, it was found (Evans et al. 1972) that the
statistics is close to that of the Gaussian radiation. However, for
sufficiently powerful astrophysical masers, the statistics may differ
significantly from the Gaussian one (Dinh-V-Trung 2009). If the
saturation level is high, this difference can be described in terms
of the changes in the relationships for the radiation phases (Gray
& Bewley 2003).

The methods developed in quantum optics, which are also
applicable in the classical case, make it possible to determine the
maser or thermal nature of the radiation of astrophysical masers
by the value of two parameters: the average intensity and the dis-
persion of the average intensity. It should be noted that thermal
radiation means the radiation from any source with the same sta-
tistical characteristics as equilibrium radiation. This interpretation
expands the concept of thermal radiation and is applicable in this
work.

2. Correlation functions of thermal andmaser radiation

The intensity (power density) of the radiation of a stationary pro-
cess is defined as a first-order correlation function for an electric
field taken at a fixed point:

I11 ≡G(1)
11 ≡ 〈I〉 ≡

〈
E(−)
1 E(+)

1

〉
(1)

Averaging is carried out over a time τ that is much higher than the
inverse radiation frequency ν−1. If, in this case, τ is much less than
the reciprocal of the emission bandwidth �ν−1, the intensity fluc-
tuations are recorded accurately. Thus, the condition for τ must
be satisfied

�ν−1 >> τ >> ν−1 (1a)
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The spatial coherence function at points 1 and 2 is

I12 ≡G(1)
12 ≡ 〈I〉 ≡

〈
E(−)
1 E(+)

2

〉
(2)

Here, E(+) is an analytical signal (Gabor 1946; Klauder &
Sudarshan 1968), E(−) = E(+)∗. The mean square of the intensity〈
I211
〉
and its variance

〈
�I211

〉
are determined in a standard way:

〈
I211
〉≡ 〈

E(−)
1 E(+)

1

〉2
,

〈
�I211

〉= 〈
(I11 − 〈I11〉)2

〉= ∫
(I11 − 〈I11〉)2p(ξ)dξ = (3)

= 〈
I211
〉− 〈I11〉2.

Here, p(ξ) is the distribution function,
∫
p(ξ)dξ =1. The value

G(2)
12 =G(2)(x1, x2)= 〈I(x1)I(x2)〉 ≡ 〈I1I2〉 (4)

(xi = {ri, ti} is the set of space-time variables) is the intensity
correlation function, and

g(2)12 = G(2)
12

〈I1〉 〈I2〉 (5)

is the normalised second-order coherence function.
The value of g(2)12 depends on x1 and x2. Spatial region in the far

field, in which the condition

|r1 − r2| <
√

ρ2
coh + c2t2coh (6)

is satisfied, is the volume of coherence (Mandel & Wolf 1995).
Here,

ρcoh ≈ λ

�θ
(7)

is the spatial coherence radius, λ is a central radiation wavelength,
�θ is an angle at which the source is observed;

ctcoh = λ2

�λ
(8)

is a longitudinal coherence length, �λ is a half-width of the emis-
sion line. The coherence time tcoh is inversely proportional to the
frequency half-width of the line:

tcoh ≈ 1
�ν

(9)

Radiation within the coherence volume can be considered as a
single-mode one (Klyshko 2011; Scully & Zubairy 1997).

If the condition

|r1 − r2| <<min (ρcoh;ctcoh) (10)

is met, then the ratio

g(2)12 ≈ g(2)11 (11)

is true with high precision. A value of the degenerate normalised
second-order autocorrelation function g(2)11 (named as ‘the bunch-
ing parameter’ in quantum optics) is determined according to
Equations (4) and (5).

Statistical parameters of radiation depend on both classical
and quantum fluctuations, which has been shown first by Albert
Einstein (Einstein 1909). The quantum fluctuations are rather
small and may not be taken into account in comparison with
classical fluctuations in the case when the degeneracy factor 〈N〉
(the ratio between the radiation energy in the coherence volume

and the photon energy) significantly exceeds unity (Klyshko 2011;
Scully & Zubairy 1997). The degeneracy factor is equal to

〈N〉 =
[
exp

(
hν
kT

)
− 1

]−1

(12)

Consequently, in the Rayleigh-Jeans limit, the quantum intensity
fluctuations are insignificant in comparison with the classical ones.

In the Rayleigh-Jeans limit, in the volume of coherence, that is
for one mode, the intensity distribution functions have the forms
(Klyshko 2011)

pT = 1
〈I11〉 exp

(
− I11

〈I11〉
)

(13)

for the thermal radiation, and

pM = δ (I11 − 〈I11〉) (14)

for the maser emission. Thus, in accordance to Equation (3), the
intensity dispersion for thermal radiation is calculated as

〈
�I2T

〉≡ 〈
�I211

〉= ∫
(IT − 〈IT〉)2〈IT〉−1 exp

(
− IT

〈IT〉
)
dIT =

= 〈
I2T
〉− 〈IT〉2 = 〈IT〉2 (15)

and, for the maser emission, as〈
�I2M

〉= 0 (16)

Here, intensities of thermal and maser radiation, determined
according to general Equation (1), are denoted as IT and IM ,
respectively.

3. Measuring the correlation function for maser sources.
discussion

In contrast to the classical Hanbury Brown-Twiss experiment, in
which the spatial correlation of intensity was measured in the opti-
cal range, for narrow-band radio sources it is possible to directly
measure the degenerate normalised second-order autocorrelation
function, that is, the bunching parameter g(2)11 can be determined
by taking measurements at one point during some time. In the
optical range, this would require a detector with a time resolution
much less than one picosecond.

Values of g(2)11 follow from Equations (5), (15), and (16), are

g(2)11(T) =
〈
I2T
〉

〈IT〉2 = 〈IT〉2 + 〈
�I2T

〉
〈IT〉2 = 1+

〈
�I2T

〉
〈IT〉2 = 1+ 〈IT〉2

〈IT〉2 = 2

(17)

for the thermal radiation, and

g(2)11(M) =
〈
I2M
〉

〈IM〉2 = 〈IM〉2 + 〈
�I2M

〉
〈IM〉2 = 〈IM〉2 + 0

〈IM〉2 = 1 (18)

for the maser radiation. When the conditions necessary for
Equations (1) and (1a) are satisfied, the radiation power recorded
by the radio telescope is proportional to the radiation intensity.
So, the intensity I in all equations below can be replaced by the
recorded power of the radio source P. Therefore, the bunching
parameter is determined by the mean square of the power

〈
P2〉 and

the variance of the squared power
〈
�P2〉

g(2)11 =
〈
P2〉

〈P〉2 = 〈P〉2 + 〈
�P2〉

〈P〉2 = 1+
〈
�P2〉
〈P〉2 (19)
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Determination of this parameter provides an opportunity to
clarify the nature of radiation from the objects that are considered
as astrophysical masers. The resulting value g(2)11 < 2 will indicate
the non-thermal (maser) nature of the source.

To assess the possibility of determining g(2)11 , let us consider the
order of the quantities included in formulas (6)–(10) for masers
on molecules OH (λ = 18 cm) and H2O (λ = 1.35 cm). Assuming
for estimates of�θ = 2 · 10−2 s,�ν ≈ 0.7 km s–1 ≈ 4KHz forOH-
masers (Patoka et al. 2021; Clegg & Cordes 1991), we obtain the
following values:

the coherence time is tcoh ≈ 250 µs,
the longitudinal coherence length is ctcoh ≈ 75 km,
the spatial coherence radius is ρcoh ≈ 1.8 · 103 km for OH

maser, ρcoh ≈ 135 km for H2Omaser.
The values of the longitudinal coherence length and the spa-

tial coherence radius are many times larger than the size of the
radio telescope antenna, and Equation (10) is satisfied. The sit-
uation concerning the temporal resolution is more complicated.
According to Equation (1a), see also Equation (20), the hard-
ware should provide significantly better temporal resolution than
the reverse bandwidth or, equivalently, the coherence time. For
a maser, the temporal resolution should be 10 µs or less. Such
temporal resolution is not required for routine observations of
masers. Recently, however, equipment used to study pulsars and
fast radio bursts has appeared, which has the required resolution
(Bij 2021; Nimmo 2021). Apparently, the use of such or simi-
lar equipment makes it possible to experimentally measure the
bunching parameter of masers.

The determination procedure consists from the long-timemea-
surement of the radiation power of the source with a time resolu-
tion τ << tcoh = (�ν)−1, and the determination of the value of g(2)11
by further statistical processing of the received data. According to
Equations (17)–(19), the processing includes determination of the
mean square of the radiation power and the square of the mean
radiation power, or, equivalently, the determination of the square
of themean radiation power and the dispersion of the square of the
power. To ensure the averaging, the value of the limiting temporal
resolution should be at least two orders of magnitude greater than
the value of the reciprocal radiation frequency. In other words,
the bandwidth should be much less than the radiation frequency,
B<< ν. Thus, the condition for the bandwidth takes the form

ν >> B>> �ν (20)

This relation coincides with Equation (1a).
Uncertainty δg of the value g(2)11 , which is crucial for deter-

mining the nature of the radiation, depends on the errors of the
measured values

〈
P2〉

m and 〈P〉2m, which differ from the true val-
ues

〈
P2〉 and 〈P〉2. In a continuous measurement process, their

accuracy is determined by the product BT of the duration of mea-
surements T and the bandwidth B. If measurements are made
discretely, then their number N provides the same accuracy as
the value of BT for continuous measurements, provided (Bendat
& Piersol 2010)

N = 2BT (21)

Based on Equation (19), uncertainty δg of the bunching param-
eter g(2)11 is calculated as (Bendat & Piersol 2010)

δg =
√√√√ 2

BT

(
σ〈P2〉
〈P〉2m

)2

+ 1
(BT)2

( 〈
P2
〉2
m σ 4

〈P〉
〈P〉4m

)
(22)

Here, σ〈P2〉 and σ〈P〉 are the variances of the measured values〈
P2〉

m and 〈P〉2m (not to be confused with the variance determined
by relation (3)). Obviously, the factors in parentheses in relation
(22) are of order of 1. In addition, for large values of the product
BT, the second term is negligible compared to the first one. Thus,
with a bandwidth B= 10MHz, the duration T of themeasurement
process more than a few seconds provides a fairly good accuracy
in determining the value of g(2)11 .

Hardware noise also affects the accuracy of the determination.
The accuracy of determining of g(2)11 can be improved in the case
of registering not only the total power P0, which is the sum of the
useful signal P and noise P1, but also the noise separately. If P and
P1 are statistically independent, the mean value of the total power
is the sum of themean values of themean value of the signal power
and the mean value of the noise power

〈P0〉 = 〈P〉 + 〈P1〉 (23)
and the total variance is the sum of variances〈

�P2
0
〉= 〈

�P2〉+ 〈
�P2

1
〉

(24)

From this it follows that g(2)11 can be presented as

g(2)11 = 1+
〈
P2
0
〉− 〈P0〉2 − 〈

P2
1
〉+ 〈P1〉2

(〈P0〉 − 〈P1〉)2 (25)

Assuming that the values of
〈
P2
1
〉− 〈P1〉2 and 〈P1〉 are known with

enough accuracy for a radio telescope, the uncertainty δg of the
bunching parameter g(2)11 in this case is equal to (Bendat & Piersol
2010)

δg = 1
(〈P0〉 − 〈P1〉)2

×

√√√√2
(
σ〈P2

0〉
)2

BT
+ σ 4

〈P0〉
(〈P0〉 〈P1〉 − 〈P0〉2 + 〈

P2
1
〉− 〈P1〉2

)2
(BT)2(〈P0〉 − 〈P1〉)2〈P0〉2

(26)
and can also be quite small for a large value of the product BT.
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