Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:49:27.009Z Has data issue: false hasContentIssue false

Increasing the Field Size of the Molonglo Observatory Synthesis Telescope

Published online by Cambridge University Press:  25 April 2016

M. I. Large
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006
D. Campbell-Wilson
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006
L. E. Cram
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006
R. G. Davison
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006
J. G. Robertson
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006

Abstract

The Molonglo Observatory Synthesis Telescope (MOST), which at present images a fully synthesised 70′ field in 12 h, is being converted to enable observing modes which extend the field size to 160′. The new observing modes will allow the MOST to survey completely the sky south of δ = −30° to a (5σ) sensitivity limit of about 5 mJy. The result will be a catalogue of over 400,000 radio sources with a spatial density of less than 1 source per 100 beam areas, providing the foundation for a number of novel astronomical and cosmological investigations. The conversion involves construction of 352 low-noise HEMT preamplifiers, 88 digitally controlled UHF quad phase shifters, 88 mixers and IF sections, a new communication and control system, and several other new sub-systems. The project has been funded and developments are well advanced.

Type
Instruments and Basic Astronomy
Copyright
Copyright © Astronomical Society of Australia 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amy, S. W. and Large, M. I., 1990, Proc. Astron. Soc. Aust, 8, 308.Google Scholar
Amy, S. W. and Large, M. I., 1992, Aust J. Phys., 45, 105.CrossRefGoogle Scholar
Amy, S. W., Large, M. I. and Vaughan, A. E., 1989, Proc. Astron. Soc. Aust., 8, 172.CrossRefGoogle Scholar
Baldwin, J. E., 1984, In Indirect Imaging, Roberts, J. A.(ed.), Cambridge University Press, p. 11.Google Scholar
Bolton, J. G. et al., 1979, Aust. J. Phys. Astrophys. Suppl., No 46 and references therein.Google Scholar
Condon, J. J., Broderick, J. J. and Seielstad, G. A., 1989, Astron. J., 97, 1064.CrossRefGoogle Scholar
Gray, A. D., Large, M. I., Campbell-Wilson, D. and Cram, L. E., 1990, Solar Phys., 125, 359.Google Scholar
Gregory, P. C., Vavasour, J. D., Scott, W. K. and Condon, J. J., 1993, Astrophys. J. Suppl. (submitted).Google Scholar
Griffith, M. R. et al, 1991, Proc. Astron. Soc. Aust., 9, 243.Google Scholar
Griffith, M. R. and Wright, A. E., 1993, Astron. J., 105, 1666.Google Scholar
Large, M. I. and Frater, R. H., 1969, Proc. IREE Aust., 69, 227.Google Scholar
Large, M. I, Cram, L. E. and Burgess, A. M., 1991, The Observatory, 111, 72.Google Scholar
Large, M. I., Mills, B. Y., Little, A. G., Crawford, D. F. and Sutton, J. M., 1981, Mon. Not. R. Astron. Soc., 194, 693 and microfiches MN 194/1.Google Scholar
Large, M. I., Vaughan, A. E., Durdin, J. M. and Little, A. G., 1984, Proc. Astron. Soc. Aust., 5, 569.CrossRefGoogle Scholar
Mills, B. Y., 1981, Proc. Astron. Soc. Aust., 4, 156.Google Scholar
Mills, B. Y., 1985, Proc. Astron. Soc. Aust., 6, 72.Google Scholar
Mills, B. Y., Aitchison, R. E., Little, A. G. and McAdam, W.B., 1963, Proc. IREE Aust., 24, 156.Google Scholar
Mills, B. Y. and Little, A. G., 1972, Proc. Astron. Soc. Aust., 2, 134.Google Scholar
Otrupcek, R. E. and Wright, A. E., 1991, Proc. Astron. Soc. Aust., 9, 170.Google Scholar
Robertson, J. G., 1991, Aust. J. Phys., 44, 729.Google Scholar
Shaver, P. A., 1991, Aust. J. Phys., 44, 759.Google Scholar
Shaver, P. A. and Pierre, M., 1989, Astron. Astrophys., 220, 35.Google Scholar
Subrahmanya, C. R. and Mills, B. Y., 1987, Observational Cosmology, IAU Symp. 124, Hewitt, A. et al. (eds), p. 569.CrossRefGoogle Scholar