Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T17:29:09.556Z Has data issue: false hasContentIssue false

Helium in Three H II Galaxies and the Helium Abundance

Published online by Cambridge University Press:  25 April 2016

B. E. J. Pagel*
Affiliation:
Royal Greenwich Observatory
E. A. Simonson
Affiliation:
Astronomy Centre, Sussex University
*
Present address: Nordita, 17 Blegdamsvej, DK-2100 Copenhagen O, Denmark

Extended abstract

The mass-fraction Y of helium in the interstellar medium is between 0.22 and 0.30 wherever it has been measured and it is believed to be the sum of two components: YP from Big Bang nucleosynthesis (BBNS) at about 100 s after the Big Bang (ABB) and a temperature near 0.1 MeV, and ΔY due to processing in stars. Precise measurements of Yp, along with balances of trace elements D, 3He, 7Li also resulting from BBNS, provide important tests of BBNS theory and of parameters of cosmology and particle physics, notably the contribution ΩBO of baryons to the mean density of matter in the universe (in units of the closure density), the number Nv of light neutrino flavours (or families of quarks and leptons) and the half-life т½ of the neutron (Shaver et al. 1983; Yang et al. 1984; Boesgaard and Steigman 1985). Figure 1 shows the predicted abundances from Standard BBNS theory (SBBN) as a function of η = μB/nλ the ratio of baryons to photons (unchanged since e± annihilation a few seconds ABB), which is proportional (through the known temperature of the microwave background) to ΩBOh20 where h0 is the Hubble constant in units of 100 km s−1 Mpc−1. SBBN theory (which assumes a homogeneous Friedmann universe and small lepton numbers), when combined with reasonable ideas on Galactic chemical evolution that predict a primordial (D + 3He)/H ratio below 10−4, imply that η ≥ 3 × 10−10 (shown by the tall vertical line in Fig. 1), which in turn implies YP≥0.210 if Nv = 3 and т½≥10.4 minutes. But this limit can be somewhat relaxed if т½ is smaller (current measurements permit values down to 9.0 minutes, e.g. Last et al. 1988) and/or if the quark-hadron phase transition around 200 MeV is first-order and leads to significant density fluctuations (Kurki-Sunonio et al. 1989; Reeves 1989).

Type
Invited
Copyright
Copyright © Astronomical Society of Australia 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boesgaard, A. M. Steigman, G., 1985, Ann. Rev. Astron. Astrophys., 23, 319.Google Scholar
Campbell, A., Terlevich, R. J. and Melnick, J., 1986, Mon. Not. R. Astron. Soc., 223, 811.CrossRefGoogle Scholar
Clegg, R. E. S., 1987, Mon. Not. R. Astron. Soc., 229, 31P.Google Scholar
Davidson, K. and Kinman, T. D., 1985, Astrophys. J. Suppl., 58, 321.Google Scholar
Deliyannis, C. P., Demarque, P., Kawaler, S. D., Krauss, L. M. and Romanelli, P., 1989, Phys. Rev. Lett., 62, 1583.CrossRefGoogle Scholar
Kunth, D. and Sargent, W. L. W., 1983, Astrophys. J., 273, 81.Google Scholar
Kurki-Suonio, H., Matzner, R. A., Olive, K. A. and Schramm, D. N., 1989, Preprint.Google Scholar
Last, J., Arnold, M. and Donner, J., 1988, Phys. Rev. Lett, 60, 995.CrossRefGoogle Scholar
Lequeux, J., Peimbert, M., Rayo, J. F., Serrano, A. and Torres-Peimbert, S., 1979, Astron. Astrophys., 80, 155.Google Scholar
Pagel, B. E. J., 1987a, in A Unified View of the Macro and the Micro-Cosmos (First International School on Astroparticle Physics, Erice), de Rujula, A., Nanopoulos, D. V. and Shaver, P. A. (eds.) (Singapore: World Scientific), p. 399.Google Scholar
Pagel, B. E. J., 1987b, in Starbursts and Galaxy Evolution, Montmerle, T. and Van, J. T. T. (eds) (Paris: Ed. Frontières), p. 227.Google Scholar
Pagel, B. E. J., 1989, in Evolutionary Phenomena in Galaxies, Beckman, J. E. and Pagel, B. E. J. (eds), (Cambridge University Press).Google Scholar
Pagel, B. E. J., 1990, in Baryonic Dark Matter, Lynden-Bell, D. and Gilmore, G. (eds), in preparation.Google Scholar
Pagel, B. E. J. and Simonson, E. A., 1989, Rev. Mex. Astr. Astrofis., in press.Google Scholar
Pagel, B. E. J., Terlevich, R. J. and Melnick, J., 1986, Pub. Astron. Soc. Pacific, 98, 1005.Google Scholar
Peimbert, M., and Torres-Peimbert, S., 1974, Astrophys. J., 193, 327.CrossRefGoogle Scholar
Peimbert, M., and Torres-Peimbert, S., 1976, Astrophys. J., 203, 581.CrossRefGoogle Scholar
Rebolo, R., Molaro, P. and Beckman, J. E., 1988, Astron. Astrophys., 192, 192.Google Scholar
Reeves, H., 1989, Physics Reports, in press.Google Scholar
Shaver, P. A., Kunth, D. and Kjar, K. (eds), 1983, Primordial Helium, ESO, Garching.Google Scholar
Terlevich, R. J., Melnick, J., Masegosa, J. and Moles, M., 1989, in preparation.Google Scholar
Torres-Peimbert, S., Peimbert, M. and Fierro, J., 1989, Astrophys. J., submitted.Google Scholar
Yang, J., Turner, M. S., Steigman, G., Schramm, D. N. and Olive, K. A., 1984, Astrophys. J., 281, 493.CrossRefGoogle Scholar