Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T19:00:13.972Z Has data issue: false hasContentIssue false

U-Statistic Hierarchical Clustering

Published online by Cambridge University Press:  01 January 2025

Roy G. D’Andrade*
Affiliation:
University of California, San Diego
*
Requests for reprints should be sent to Roy G. D'Andrade, Department of Anthropology, University of California, San Diego, La Jolla, CA 92093.

Abstract

A monotone invariant method of hierarchical clustering based on the Mann-Whitney U-statistic is presented. The effectiveness of the complete-link, single-link, and U-statistic methods in recovering tree structures from error perturbed data are evaluated. The U-statistic method is found to be consistently more effective in recovering the original tree structures than either the single-link or complete-link methods.

Type
Original Paper
Copyright
Copyright © 1978 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference Note

Carroll, J. D., personal communication, 1977.Google Scholar

References

Baker, F. B. & Hubert, L. J. Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association, 1975, 70, 3138.CrossRefGoogle Scholar
Boorman, S. A. & Oliver, D. C. Metrics on spaces of finite trees. Journal of Mathematical Psychology, 1973, 10, 2559.CrossRefGoogle Scholar
Hartigan, J. A. Clustering algorithms, 1975, New York: John Wiley & Sons.Google Scholar
Hubert, L. J. Monotone invariant clustering procedures. Psychometrika, 1973, 38, 4762.CrossRefGoogle Scholar
Hubert, L. J. Approximate evaluation techniques for the single-link and complete-link hierarchical clustering procedures. Journal of the American Statistical Association, 1974, 69, 698704.CrossRefGoogle Scholar
Johnson, S. C. Hierarchical clustering schemes. Psychometrika, 1967, 32, 241253.CrossRefGoogle ScholarPubMed
Kruskal, J. B. & Carroll, J. D. Geometric models and badness of fit functions. Multivariate analyses, 1969, San Francisco: Academic Press.Google Scholar
Seigel, S. Non-parametric statistics, 1956, New York: McGraw-Hill.Google Scholar
Sokal, R. R. & Sneath, P. H. A. Principles of numerical taxonomy, 1963, San Francisco: Freeman.Google Scholar