Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T12:04:19.865Z Has data issue: false hasContentIssue false

A General Model for Preferential and Triadic Choice in Terms of Central F Distribution Functions

Published online by Cambridge University Press:  01 January 2025

Daniel M. Ennis*
Affiliation:
Philip Morris Research Center; Department of Physiology, The Medical College of Virginia; and The University of Illinois
Norman L. Johnson
Affiliation:
Department of Statistics, University of North Carolina
*
Requests for reprints should be sent to Daniel Ennis, Philip Morris Research Center, PO Box 26583, Richmond, Virginia, 23261.

Abstract

A model for preferential and triadic choice is derived in terms of weighted sums of central F distribution functions. This model is a probabilistic generalization of Coombs' (1964) unfolding model and special cases, such as the model of Zinnes and Griggs (1974), can be derived easily from it. This new form extends previous work by Mullen and Ennis (1991) and provides more insight into the same problem that they discussed.

Type
Original Paper
Copyright
Copyright © 1994 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coombs, C. H. (1964). A theory of data, New York: Wiley.Google Scholar
De Soete, G., Carroll, J. D., DeSarbo, W. S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology, 30, 2841.CrossRefGoogle Scholar
Ennis, D. M., Mullen, K. (1986). A multivariate model for discrimination methods. Journal of Mathematical Psychology, 30, 206219.CrossRefGoogle Scholar
Ennis, D. M., Mullen, K. (1986). Theoretical aspects of sensory discrimination. Chemical Senses, 11, 513522.CrossRefGoogle Scholar
Ennis, D. M., Mullen, K. (1992). A general probabilistic model for triad discrimination, preferential choice, and two-alternative identification. In Ashby, F. G. (Eds.), Probabilistic multidimensional models of perception and cognition, Hillside, N. J.: Lawrence Erlbaum Associates.Google Scholar
Ennis, D. M., Mullen, K., Frijters, J. E. R (1988). Variants of the method of triads: Unidimensional Thurstonian models. British Journal of Mathematical and Statistical Psychology, 41, 2536.CrossRefGoogle Scholar
Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48, 419426.CrossRefGoogle Scholar
Johnson, N. L., Kotz, S. (1970). Distributions in statistics: Continuous univariate distributions—2, New York: Wiley.Google Scholar
Mullen, K., Ennis, D. M. (1987). Mathematical formulation of multivariate Euclidean models for discrimination methods. Psychometrika, 52, 235249.CrossRefGoogle Scholar
Mullen, K., Ennis, D. M. (1991). A simple multivariate probabilistic model for preferential and triadic choices. Psychometrika, 56, 6975.CrossRefGoogle Scholar
Mullen, K., Ennis, D. M., de Doncker, E., Kapenga, J. A. (1988). Multivariate models for the triangular and duo-trio methods. Biometrics, 44, 11691175.CrossRefGoogle ScholarPubMed
Ruben, H. (1962). Probability content of regions under spherical normal distributions, IV. Annals of Mathematical Statistics, 33, 542570.CrossRefGoogle Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar
Zinnes, J. L., Griggs, R. A. (1974). Probabilistic multidimensional unfolding analysis. Psychometrika, 39, 327350.CrossRefGoogle Scholar
Zinnes, J. L., MacKay, D. B. (1987). Probabilistic multidimensional analysis of preference ratio judgments. Communication and Cognition, 20, 1744.Google Scholar