Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T15:35:36.718Z Has data issue: false hasContentIssue false

Reduced magnetic mismatch negativity: a shared deficit in psychosis and related risk

Published online by Cambridge University Press:  02 November 2022

Christian Valt
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
Tiziana Quarto
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Department of Humanities, University of Foggia, Foggia, Italy
Angelantonio Tavella
Affiliation:
Bari University Hospital, Bari, Italy
Fabiola Romanelli
Affiliation:
Bari University Hospital, Bari, Italy
Leonardo Fazio
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Department of Medicine and Surgery, LUM University, Casamassima, Italy
Giorgio Arcara
Affiliation:
IRCCS San Camillo Hospital, Venice, Italy
Mario Altamura
Affiliation:
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
Giuseppe Barrasso
Affiliation:
Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
Antonello Bellomo
Affiliation:
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
Giuseppe Blasi
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Bari University Hospital, Bari, Italy
Flora Brudaglio
Affiliation:
Department of Mental Health, ASL Barletta-Andria-Trani, Andria, Italy
Angela Carofiglio
Affiliation:
Department of Mental Health, ASL Bari, Bari, Italy
Enrico D'Ambrosio
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Bari University Hospital, Bari, Italy Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience – King's College London, London, UK
Flavia Antida Padalino
Affiliation:
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
Antonio Rampino
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Bari University Hospital, Bari, Italy
Alessandro Saponaro
Affiliation:
Department of Mental Health, ASL Brindisi, Brindisi, Italy
Domenico Semisa
Affiliation:
Department of Mental Health, ASL Bari, Bari, Italy
Domenico Suma
Affiliation:
Department of Mental Health, ASL Brindisi, Brindisi, Italy
Giulio Pergola*
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
Alessandro Bertolino*
Affiliation:
Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy Bari University Hospital, Bari, Italy
*
Authors for correspondence: Giulio Pergola, E-mail: [email protected]; Alessandro Bertolino, E-mail: [email protected]
Authors for correspondence: Giulio Pergola, E-mail: [email protected]; Alessandro Bertolino, E-mail: [email protected]

Abstract

Background

Abnormal auditory processing of deviant stimuli, as reflected by mismatch negativity (MMN), is often reported in schizophrenia (SCZ). At present, it is still under debate whether this dysfunctional response is specific to the full-blown SCZ diagnosis or rather a marker of psychosis in general. The present study tested MMN in patients with SCZ, bipolar disorder (BD), first episode of psychosis (FEP), and in people at clinical high risk for psychosis (CHR).

Methods

Source-based MEG activity evoked during a passive auditory oddball task was recorded from 135 patients grouped according to diagnosis (SCZ, BD, FEP, and CHR) and 135 healthy controls also divided into four subgroups, age- and gender-matched with diagnostic subgroups. The magnetic MMN (mMMN) was analyzed as event-related field (ERF), Theta power, and Theta inter-trial phase coherence (ITPC).

Results

The clinical group as a whole showed reduced mMMN ERF amplitude, Theta power, and Theta ITPC, without any statistically significant interaction between diagnosis and mMMN reductions. The mMMN subgroup contrasts showed lower ERF amplitude in all the diagnostic subgroups. In the analysis of Theta frequency, SCZ showed significant power and ITPC reductions, while only indications of diminished ITPC were observed in CHR, but no significant decreases characterized BD and FEP.

Conclusions

Significant mMMN alterations in people experiencing psychosis, also for diagnoses other than SCZ, suggest that this neurophysiological response may be a feature shared across psychotic disorders. Additionally, reduced Theta ITPC may be associated with risk for psychosis.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

**

These authors contributed equally to this work.

References

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience, 20(3), 327339. doi:10.1038/nn.4504.CrossRefGoogle ScholarPubMed
Baldeweg, T., & Hirsch, S. R. (2015). Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer's disease. International Journal of Psychophysiology, 95(2), 145155. doi:10.1016/j.ijpsycho.2014.03.008.CrossRefGoogle ScholarPubMed
Bodatsch, M., Brockhaus-Dumke, A., Klosterkotter, J., & Ruhrmann, S. (2015). Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biological Psychiatry, 77(11), 951958. doi:10.1016/j.biopsych.2014.09.025.CrossRefGoogle ScholarPubMed
Braeutigam, S., Dima, D., Frangou, S., & James, A. (2018). Dissociable auditory mismatch response and connectivity patterns in adolescents with schizophrenia and adolescents with bipolar disorder with psychosis: A magnetoencephalography study. Schizophrenia Research, 193, 313318. doi:10.1016/j.schres.2017.07.048.CrossRefGoogle ScholarPubMed
Cheng, C. H., Hsu, W. Y., & Lin, Y. Y. (2013). Effects of physiological aging on mismatch negativity: A meta-analysis. International Journal of Psychophysiology, 90(2), 165171. doi:10.1016/j.ijpsycho.2013.06.026.CrossRefGoogle ScholarPubMed
Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 115. doi:10.1016/j.neuroimage.2010.06.010.CrossRefGoogle ScholarPubMed
Erickson, M. A., Ruffle, A., & Gold, J. M. (2016). A meta-analysis of mismatch negativity in schizophrenia: From clinical risk to disease specificity and progression. Biological Psychiatry, 79(12), 980987. doi:10.1016/j.biopsych.2015.08.025.CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. doi:10.3758/bf03193146.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). Guide for the structured clinical interview for DSM-IV axis I disorders-research version. New York: Biometrics Research.Google Scholar
Fitzgerald, K., & Todd, J. (2020). Making sense of mismatch negativity. Frontiers in Psychiatry, 11, 468. doi:10.3389/fpsyt.2020.00468.CrossRefGoogle ScholarPubMed
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360(1456), 815836. doi:10.1098/rstb.2005.1622.CrossRefGoogle ScholarPubMed
Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2–3), 8394. doi:10.1016/j.schres.2016.07.014.CrossRefGoogle ScholarPubMed
Fuentemilla, L., Marco-Pallares, J., Munte, T. F., & Grau, C. (2008). Theta EEG oscillatory activity and auditory change detection. Brain Research, 1220, 93101. doi:10.1016/j.brainres.2007.07.079.CrossRefGoogle ScholarPubMed
Fujioka, M., Kirihara, K., Koshiyama, D., Tada, M., Nagai, T., Usui, K., … Kasai, K. (2020). Mismatch negativity predicts remission and neurocognitive function in individuals at ultra-high risk for psychosis. Frontiers in Psychiatry, 11, 770. doi:10.3389/fpsyt.2020.00770.CrossRefGoogle ScholarPubMed
Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453463. doi:10.1016/j.clinph.2008.11.029.CrossRefGoogle ScholarPubMed
Grent-’t-Jong, T., Gajwani, R., Gross, J., Gumley, A. I., Krishnadas, R., Lawrie, S. M., … Uhlhaas, P. J. (2020). Association of magnetoencephalographically measured high-frequency oscillations in visual cortex with circuit dysfunctions in local and large-scale networks during emerging psychosis. JAMA Psychiatry, 77(8), 852862. doi:10.1001/jamapsychiatry.2020.0284.CrossRefGoogle ScholarPubMed
Haigh, S. M., Coffman, B. A., & Salisbury, D. F. (2017). Mismatch negativity in first-episode schizophrenia: A meta-analysis. Clinical EEG and Neuroscience, 48(1), 310. doi:10.1177/1550059416645980.CrossRefGoogle ScholarPubMed
Hamilton, H. K., Roach, B. J., Bachman, P. M., Belger, A., Carriòn, R. E., Duncan, E., … Mathalon, D. H. (2022). Mismatch negativity in response to auditory deviance and risk for future psychosis in youth at clinical high risk for psychosis. JAMA Psychiatry, 79(8), 780789. doi:10.1001/jamapsychiatry.2022.1417.CrossRefGoogle ScholarPubMed
Hamilton, H. K., Roach, B. J., & Mathalon, D. H. (2021). Forecasting remission from the psychosis risk syndrome with mismatch negativity and P300: Potentials and pitfalls. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(2), 178187. doi:10.1016/j.bpsc.2020.10.010.Google ScholarPubMed
Hillebrand, A., & Barnes, G. R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. Neuroimage, 16(3), 638650. doi:10.1006/nimg.2002.1102.CrossRefGoogle ScholarPubMed
Hunold, A., Funke, M. E., Eichardt, R., Stenroos, M., & Haueisen, J. (2016). EEG and MEG: Sensitivity to epileptic spike activity as function of source orientation and depth. Physiological Measurement, 37(7), 11461162. doi:10.1088/0967-3334/37/7/1146.CrossRefGoogle ScholarPubMed
Javitt, D. C., Lee, M., Kantrowitz, J. T., & Martinez, A. (2018). Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia. Schizophrenia Research, 191, 5160. doi:10.1016/j.schres.2017.06.023.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. doi:10.1093/schbul/13.2.261.CrossRefGoogle ScholarPubMed
Kiang, M., Braff, D. L., Sprock, J., & Light, G. A. (2009). The relationship between preattentive sensory processing deficits and age in schizophrenia patients. Clinical Neurophysiology, 120(11), 19491957. doi:10.1016/j.clinph.2009.08.019.CrossRefGoogle ScholarPubMed
Kim, H. K., Blumberger, D. M., & Daskalakis, Z. J. (2020). Neurophysiological biomarkers in schizophrenia- P50, mismatch negativity, and TMS-EMG and TMS-EEG. Frontiers in Psychiatry, 11, 795. doi:10.3389/fpsyt.2020.00795.CrossRefGoogle ScholarPubMed
Koshiyama, D., Miyakoshi, M., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., Sprock, J., … Light, G. A. (2020). Abnormal effective connectivity underlying auditory mismatch negativity impairments in schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(11), 10281039. doi:10.1016/j.bpsc.2020.05.011.Google ScholarPubMed
Koshiyama, D., Thomas, M. L., Miyakoshi, M., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., … Light, G. A. (2021). Hierarchical pathways from sensory processing to cognitive, clinical, and functional impairments in schizophrenia. Schizophrenia Bulletin, 47(2), 373385. doi:10.1093/schbul/sbaa116.CrossRefGoogle ScholarPubMed
Lang, U., Yates, K., Leacy, F. P., Clarke, M. C., McNicholas, F., Cannon, M., & Kelleher, I. (2022). Systematic review and meta-analysis: Psychosis risk in children and adolescents with an at-risk mental state. Journal of the American Academy of Child and Adolescent Psychiatry, 61(5), 615625. doi:10.1016/j.jaac.2021.07.593.CrossRefGoogle ScholarPubMed
Lee, M., Sehatpour, P., Hoptman, M. J., Lakatos, P., Dias, E. C., Kantrowitz, J. T., … Javitt, D. C. (2017). Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Molecular Psychiatry, 22(11), 15851593. doi:10.1038/mp.2017.3.CrossRefGoogle ScholarPubMed
Light, G. A., Joshi, Y. B., Molina, J. L., Bhakta, S. G., Nungaray, J. N., Cardoso, L., … Swerdlow, N. R. (2020). Neurophysiological biomarkers for schizophrenia therapeutics. Biomarkers in Neuropsychiatry, 2, 100012. doi:10.1016/j.bionps.2020.100012.CrossRefGoogle Scholar
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146157. doi:10.1111/psyp.12639.CrossRefGoogle ScholarPubMed
Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognive Sciences, 8(5), 204210. doi:10.1016/j.tics.2004.03.008.CrossRefGoogle ScholarPubMed
Michie, P. T., Budd, T. W., Todd, J., Rock, D., Wichmann, H., Box, J., & Jablensky, A. V. (2000). Duration and frequency mismatch negativity in schizophrenia. Clinical Neurophysiology, 111(6), 10541065. doi:10.1016/s1388-2457(00)00275-3.CrossRefGoogle ScholarPubMed
Millan, M. J., Andrieux, A., Bartzokis, G., Cadenhead, K., Dazzan, P., Fusar-Poli, P., … Weinberger, D. (2016). Altering the course of schizophrenia: Progress and perspectives. Nature Review Drug Discovery, 15(7), 485515. doi:10.1038/nrd.2016.28.CrossRefGoogle Scholar
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 25442590. doi:10.1016/j.clinph.2007.04.026.CrossRefGoogle ScholarPubMed
Naatanen, R., Shiga, T., Asano, S., & Yabe, H. (2015). Mismatch negativity (MMN) deficiency: A break-through biomarker in predicting psychosis onset. International Journal of Psychophysiology, 95(3), 338344. doi:10.1016/j.ijpsycho.2014.12.012.CrossRefGoogle ScholarPubMed
Nagai, T., Tada, M., Kirihara, K., Araki, T., Jinde, S., & Kasai, K. (2013). Mismatch negativity as a “translatable” brain marker toward early intervention for psychosis: A review. Frontiers in Psychiatry, 4, 115. doi:10.3389/fpsyt.2013.00115.CrossRefGoogle ScholarPubMed
Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(Suppl D), 512.Google ScholarPubMed
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75(6), 459469. doi:10.1016/j.biopsych.2013.07.038.CrossRefGoogle ScholarPubMed
Raggi, A., Lanza, G., & Ferri, R. (2021). Auditory mismatch negativity in bipolar disorder: A focused review. Reviews in the Neurosciences, 33(1), 1730. doi:10.1515/revneuro-2021-0010.CrossRefGoogle ScholarPubMed
Rojas, D. C. (2019). Review of schizophrenia research using MEG. In Supek, S. & Aine, C. (Eds.), Magnetoencephalography (pp. 11211146). Cham: Springer. doi:10.1007/978-3-030-00087-5_41.CrossRefGoogle Scholar
Shaikh, M., Valmaggia, L., Broome, M. R., Dutt, A., Lappin, J., Day, F., … Bramon, E. (2012). Reduced mismatch negativity predates the onset of psychosis. Schizophrenia Research, 134(1), 4248. doi:10.1016/j.schres.2011.09.022.CrossRefGoogle ScholarPubMed
Shapleske, J., Rossell, S. L., Woodruff, P. W., & David, A. S. (1999). The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Research: Brain Research Reviews, 29(1), 126149. doi:10.1016/s0165-0173(98)00047-2.Google ScholarPubMed
Shelley, A. M., Ward, P. B., Catts, S. V., Michie, P. T., Andrews, S., & McConaghy, N. (1991). Mismatch negativity: An index of a preattentive processing deficit in schizophrenia. Biological Psychiatry, 30(10), 10591062. doi:10.1016/0006-3223(91)90126-7.CrossRefGoogle ScholarPubMed
Shimano, S., Onitsuka, T., Oribe, N., Maekawa, T., Tsuchimoto, R., Hirano, S., … Kanba, S. (2014). Preattentive dysfunction in patients with bipolar disorder as revealed by the pitch-mismatch negativity: A magnetoencephalography (MEG) study. Bipolar Disorder, 16(6), 592599. doi:10.1111/bdi.12208.CrossRefGoogle ScholarPubMed
Shin, K. S., Kim, J. S., Kang, D. H., Koh, Y., Choi, J. S., O'Donnell, B. F., … Kwon, J. S. (2009). Pre-attentive auditory processing in ultra-high-risk for schizophrenia with magnetoencephalography. Biological Psychiatry, 65(12), 10711078. doi:10.1016/j.biopsych.2008.12.024.CrossRefGoogle ScholarPubMed
Tada, M., Kirihara, K., Mizutani, S., Uka, T., Kunii, N., Koshiyama, D., … Kasai, K. (2019). Mismatch negativity (MMN) as a tool for translational investigations into early psychosis: A review. International Journal of Psychophysiology, 145, 514. doi:10.1016/j.ijpsycho.2019.02.009.CrossRefGoogle ScholarPubMed
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, e879716. doi:10.1155/2011/879716.CrossRefGoogle ScholarPubMed
Tadel, F., Bock, E., Niso, G., Mosher, J. C., Cousineau, M., Pantazis, D., … Baillet, S. (2019). MEG/EEG group analysis with brainstorm. Frontiers in Neuroscience, 13, 76. doi:10.3389/fnins.2019.00076.CrossRefGoogle ScholarPubMed
Takei, Y., Kumano, S., Maki, Y., Hattori, S., Kawakubo, Y., Kasai, K., … Mikuni, M. (2010). Preattentive dysfunction in bipolar disorder: A MEG study using auditory mismatch negativity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(6), 903912. doi:10.1016/j.pnpbp.2010.04.014.CrossRefGoogle ScholarPubMed
Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology, 51(7), 17591768. doi:10.1088/0031-9155/51/7/008.CrossRefGoogle ScholarPubMed
Thomas, M. L., Green, M. F., Hellemann, G., Sugar, C. A., Tarasenko, M., Calkins, M. E., … Light, G. A. (2017). Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry, 74, 3746. doi:10.1001/jamapsychiatry.2016.2980.CrossRefGoogle ScholarPubMed
Tseng, Y. J., Nouchi, R., & Cheng, C. H. (2021). Mismatch negativity in patients with major depressive disorder: A meta-analysis. Clinical Neurophysiology, 132(10), 26542665. doi:10.1016/j.clinph.2021.06.019.CrossRefGoogle ScholarPubMed
Tsolaki, A., Kosmidou, V., Hadjileontiadis, L., Kompatsiaris, I. Y., & Tsolaki, M. (2015). Brain source localization of MMN, P300 and N400: Aging and gender differences. Brain Research, 1603, 3249. doi:10.1016/j.brainres.2014.10.004.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J., Liddle, P., Linden, D. E. J., Nobre, A. C., Singh, K. D., & Gross, J. (2017). Magnetoencephalography as a tool in psychiatric research: Current status and perspective. Biological Psychiatry: Cognitive Neuroscienece and Neuroimaging, 2(3), 235244. doi:10.1016/j.bpsc.2017.01.005.Google ScholarPubMed
Umbricht, D., Koller, R., Schmid, L., Skrabo, A., Grubel, C., Huber, T., & Stassen, H. (2003). How specific are deficits in mismatch negativity generation to schizophrenia? Biological Psychiatry, 53(12), 11201131. doi:10.1016/s0006-3223(02)01642-6.CrossRefGoogle ScholarPubMed
Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews: Neuroscience, 2(4), 229239. doi:10.1038/35067550.CrossRefGoogle ScholarPubMed
Yung, A. R., Yuen, H. P., McGorry, P. D., Phillips, L. J., Kelly, D., Dell'Olio, M., … Buckby, J. (2005). Mapping the onset of psychosis: The comprehensive assessment of at-risk mental states. Australian and New Zealand Journal of Psychiatry, 39(11–12), 964971. doi:10.1080/j.1440-1614.2005.01714.x.CrossRefGoogle ScholarPubMed
Supplementary material: File

Valt et al. supplementary material

Figures S1-S5

Download Valt et al. supplementary material(File)
File 1 MB