Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T08:56:14.419Z Has data issue: false hasContentIssue false

Glutamate receptors, microtubule associated proteins and developmental anomaly in schizophrenia: an hypothesis1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1993

References

Aoki, C. & Siekovitz, P. (1985). Ontogenetic changes in the cyclic adenosine 3′5′-monophosphate stimulatable phosphorylation of cut visual cortex. Particularly of microtubule associated protein 2 (MAP2). Journal of Neuroscience 5, 24652483.Google Scholar
Arnold, S. E., Lee, V. M. Y., Gur, R. E. & Trojanowski, J. (1991). Abnormal expression of two microtubule associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proceedings of the National Academy of Sciences 88, 1085010854.CrossRefGoogle ScholarPubMed
Aruffo, C., Ferszt, R., Hildebraudt, A. G. & Cervos Navarro, J. (1897). Low doses of L-monosodium glutamate promote neuronal growth and differentiation in vitro. Developmental Neuroscience 9, 228239.CrossRefGoogle Scholar
Balazs, R., Jorgenson, O. S. & Hack, N. (1988). N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27, 437451.CrossRefGoogle ScholarPubMed
Bigot, D., Matus, A. & Hunt, S. P. (1991). Reorganisation of the cytoskeleton in rat neurons following stimulation with excitatory amino acids in vitro. European Journal of Neuroscience 3, 551558.CrossRefGoogle Scholar
Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia: a morphometric study of brain volume and shrinkage. Archives of General Psychiatry 42, 784791.CrossRefGoogle ScholarPubMed
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoo, R., Johnstone, E. C. & Marsh, L. (1986). Post-mortem evidence of structural brain changes in schizophrenia: differences in brain weight, temporal horn and parahippocampal gyrus compared with affective disorder. Archives of General Psychiatry 43, 3642.CrossRefGoogle Scholar
Castle, D. & Murray, R. M. (1991). The neurodevelopmental basis of sex differences in schizophrenia. Psychological Medicine 21, 565577.CrossRefGoogle ScholarPubMed
Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623634.Google Scholar
Crow, T. J., Ferrier, I. N., Johnstone, E. C., Pwens, D. G. C., Roberts, G. W., Lee, Y. C., Bloom, S. R. & Polak, J. M. (1982). Neuroendocrine aspects of schizophrenia. In Neuropeptides: Basic and Clinical Aspects (ed. Fink, G., and Whalley, L. J.). pp. 222239. Churchill, Livingstone: Edinburgh.Google Scholar
Deakin, J. F. W., Slater, P., Simpson, M. D. C., Gilchrist, A. C., Skan, W. J., Royston, M. C., Reynolds, G. P. & Cross, A. J. (1989). Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. Journal of Neurochemistry 52, 17811786.CrossRefGoogle ScholarPubMed
Drubin, D. G. & Kirschner, M. W. (1986). Tau protein function in living cells. Journal of Cell Biology 103, 27392746.CrossRefGoogle ScholarPubMed
Falkai, P. & Bogerts, B. (1986). Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Science 236, 154161.CrossRefGoogle ScholarPubMed
Falkai, P., Bogerts, B., Roberts, G. W. & Crow, T. J. (1988). Measurement of the alpha-cell migration in the entorhinal region: a marker for the developmental disturbances in schizophrenia. Schizophrenia Research 1, 157158.Google Scholar
Farmery, S. P. Q., Owen, F., Poulter, M. & Crow, T. J. (1985). Reduced high affinity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Science 36, 473477.Google Scholar
Ferrier, I. N., Roberts, G. W., Crow, T. J., Johnstone, E. C., Owens, D. G. C., Lee, Y. C., O'Shaughnessy, D., Adrian, T. E., Polak, J. M. & Bloom, S. R. (1983). Reduced cholecystokinin line and somatostatin line immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Science 33, 475482.CrossRefGoogle Scholar
Harrison, P. J., McLaughlin, D. & Kerwin, R. W. (1991). Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 337, 450452.CrossRefGoogle ScholarPubMed
Jakob, H. & Beckmann, H. (1989). Gross and histological criteria for developmental disorders in brains of schizophrenics. Journal of the Royal Society of Medicine 82, 466469.Google Scholar
Jones, P. & Murray, R. M. (1991). Aberrant neurodevelopment as the expression of the schizophrenic genotype. In The New Genetics of Mental Illness (ed. McGuffin, P. and Murray, R. M.). pp. 112129. Heinemann Medical Books: London.Google Scholar
Kerwin, R. W., Patel, S., Meldrum, B. S., Czudek, C. & Reynolds, G. P. (1988). Asymmetrical loss of glutamate receptor subtype in left hippocampus in schizophrenia. Lancet i, 583584.CrossRefGoogle Scholar
Kerwin, R. W., Patel, S. & Meldrum, B. S. (1990). Autoradiographic localization of the glutamate receptor system in control and schizophrenic post-mortem hippocampal formation. Neuroscience 39, 2532.CrossRefGoogle Scholar
Kerwin, R. W., Robinson, P. & Stephenson, J. (1992). Autoradiographic analysis of cholecystokinin receptors in post-mortem schizophrenic temporal lobe. Psychological Medicine 22, 3744.Google Scholar
Lewis, S. W. & Murray, R. M. (1987). Obstetric complications, neurodevelopmental deviance and risk of schizophrenia. Journal of Psychiatric Research 21, 413421.CrossRefGoogle ScholarPubMed
McDonald, J. W. & Johnstone, M. V. (1990). Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Research Reviews 15, 4170.CrossRefGoogle ScholarPubMed
Mattson, M. P. (1988). Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Research Reviews 13, 179212.Google Scholar
Mattson, M. P., Lee, R. E., Adams, M. E., Guthrie, P. B. & Kater, S. B. (1988 a). Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1, 865876.CrossRefGoogle ScholarPubMed
Mattson, M. P., Dou, P. & Kater, S. B. (1988 b). Outgrowth regulating actions of glutamate in isolated hippocampal pyramidal neurones. Journal of Neuroscience 8, 20872100.CrossRefGoogle Scholar
Matus, A. (1988). Microtuble associated proteins. Their potential role in determining neuronal morphology. Annual Reviews in the Neurosciences 11, 2944.Google Scholar
Monyer, H., Seeburg, P. & Wisden, W. (1991). Glutamate operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6, 799810.CrossRefGoogle ScholarPubMed
Nunez, J. (1986). Differential expression of microtubule components during brain development. Developmental Neuroscience 8, 125141.CrossRefGoogle ScholarPubMed
O'Callaghan, E., Larkin, C., Redmond, O., Stack, J., Ennis, J. T. & Waddington, J. L. (1988). Early onset schizophrenia after teenage head injury. British Journal of Psychiatry 158, 764769.CrossRefGoogle Scholar
O'Callaghan, E., Sam, P., Takei, N., Glover, G. & Murray, R. M. (1991). Schizoprehenia after prenatal exposure to the 1857 influenza A2 epidemic. Lancet 337, 12481250.CrossRefGoogle Scholar
Pearce, I. A., Cambray-Deakin, M. A. & Burgoyne, R. D. (1987). Glutamate acting on NMDA receptors stimulates neurite outgrowth from cerebellar granule cells. FEBS Letters 223, 143147.Google Scholar
Roberts, G. W. (1991). Schizophrenia: a neuropathological perspective. British Journal of Psychiatry 158, 817.CrossRefGoogle ScholarPubMed
Roberts, G. W., Colter, N., Lofthouse, R., Bogerts, B., Zech, N. & Crow, T. J. (1986). Gliosis in schizophrenia. Biological Psychiatry 21, 10431050.CrossRefGoogle ScholarPubMed
Santiere, P. E., Sindou, P., Couratier, P., Hugon, J., Wattex, A. & Delacourte, A. (1992). Tau antigenic changes induced by glutamate in rat primary culture model: a biochemical approach. Neuroscience Letters 140, 206210.Google Scholar
Silverstein, F. S., Tarke, L., Barks, J. & Johnston, M. V. (1987). Hypoxia-ischemia produces focal disruption of glutamate receptors in developing brain. Developmental Brain Research 34, 3339.CrossRefGoogle Scholar
Simpson, M. D. C., Royston, M. C., Slater, P. & Deakin, J. F. W. (1990). Phencyclidine and sigma receptor abnormalities in schizophrenic post-mortem brain. Schizophrenia Research 3, 32 (Abst. VB2).Google Scholar
Stevens, J. R. (1982). Neuropathology of schizophrenia. Archives of General Psychiatry 39, 11311139.Google Scholar
Suddath, R. L., Christison, G. W., Torrey, E. F. & Weinberger, D. R. (1990). Cerebral anatomical abnormalities in monozygotic twins discordant for schizophrenia. New England Journal of Medicine 322, 789794.Google Scholar
Weissmann, A. D., Casanova, M. F., Kleinmann, J. E., London, E. & Desouza, E. B. (1991). Selective losses of cerebral cortical sigma but not PCP binding sites in schizophrenia. Biological Psychiatry 29, 4154.Google Scholar