Published online by Cambridge University Press: 13 October 2020
Although aberrant intrinsic functional connectivity has been reported in attention-deficit/hyperactivity disorder (ADHD), we have a limited understanding of whether connectivity alterations are related to the familial risk of ADHD.
Fifty-three probands with ADHD, their unaffected siblings (n = 53) and typically developing controls (n = 53) underwent resting-state functional magnetic resonance imaging scans. A seed-based approach with the bilateral precuneus/posterior cingulate cortex (PCC) was used to derive a whole-brain functional connectivity map in each subject. The differences in functional connectivity among the three groups were tested with one-way ANOVA using randomized permutation. Comparisons between two groups were also performed to examine the increase or decrease in connectivity. The severity of ADHD symptoms was used to identify brain regions where symptom severity is correlated to the strength of intrinsic functional connectivity.
When compared to controls, both probands and unaffected siblings showed increased functional connectivity in the left insula and left inferior frontal gyrus. The connectivity in these regions was linked to better performance in response inhibition in the control group but absent in other groups. Higher ADHD symptom severity was correlated with increased functional connectivity in bilateral fronto-parietal-temporal regions only noted in probands with ADHD.
Alterations in resting-state functional connectivities with the precuneus/PCC, hubs of default-mode network, account for the underlying familial risks of ADHD. Since the left insula and left inferior frontal gyri are key regions of the salience and frontoparietal network, respectively, future studies focusing on alterations of cross-network functional connectivity as the familial risk of ADHD are suggested.