No CrossRef data available.
Published online by Cambridge University Press: 12 October 2020
In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.