Published online by Cambridge University Press: 14 November 2011
Let B be a complete Boolean algebra of projections on a complex Banach space X and let (B) denote the closed algebra of operators generated by B in the norm topology. It is shown that there is a complex Hilbert space H, a complete Boolean algebra B0 of self-adjoint projections on H, and an algebraic isomorphism of B onto B. This isomorphism is bicontinuous when B and B are endowed with the norm topologies, the weak operator topologies or the ultraweak operator topologies. It is also bicontinuous on bounded sets with respect to the strong operator topologies on B and B. As an application, it is shown that the weak and ultraweak operator topologies in fact coincide on B.