Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T07:44:37.321Z Has data issue: false hasContentIssue false

Phase portraits of the quadratic polynomial Liénard differential systems

Published online by Cambridge University Press:  04 March 2020

Márcio R. A. Gouveia
Affiliation:
Departamento de Matemática, Ibilce–UNESP, 15054-000 São José do Rio Preto, Brasil ([email protected])
Jaume Llibre
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain ([email protected])
Luci Any Roberto
Affiliation:
Departamento de Matemática, Ibilce–UNESP, 15054-000 São José do Rio Preto, Brasil ([email protected])

Abstract

We classify the global phase portraits in the Poincaré disc of the quadratic polynomial Liénard differential systems

\dot{x}=y, \quad \dot{y}=(ax+b)y+cx^2+dx+e,
where (x, y) ∈ ℝ2 are the variables and a,b,c,d,e are real parameters.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arnold, V. I. and Ilyashenko, Y. S.. Dynamical systems I, ordinary differential equations. Encyclopaedia of mathematical sciences, vols. 1–2 (Heidelberg: Springer-Verlag, 1988).Google Scholar
2Artés, J. C. and Llibre, J.. Hamiltonian quadratic systems. J. Differ. Equ. 107 (1994), 8095.CrossRefGoogle Scholar
3Artés, J. C. and Llibre, J.. Phase portraits for quadratic systems having a focus and one antisaddle. Rocky Mountain J. Math. 24 (1994), 875889.CrossRefGoogle Scholar
4Artés, J. C. and Llibre, J.. Quadratic vector fields with a weak focus of third order. Publ. Mat. 41 (1997), 739.CrossRefGoogle Scholar
5Artés, J. C., Llibre, J. and Schlomiuk, D.. The geometry of the quadratic differential systems with a weak focus of second order. Int. J. Bifurcat. Chaos 16 (2006), 31273194.CrossRefGoogle Scholar
6Berlinskii, A. N.. Qualitative study of the differential equation x′ = x + b 0x 2 + b 1xy + b 2y 2, y′ = y + a 0x 2 + a 1xy + a 2y 2. Differ. Equ. 2 (1966), 174178.Google Scholar
7Chavarriga, J., García, I. A., Llibre, J. and Zoladek, H.. Invariant algebraic curves for the cubic Liénard system with linear damping. Bull. Sci. Math. 130 (2006), 428441.CrossRefGoogle Scholar
8Cherkas, L. A.. Liénard systems for quadratic systems with invariant algebraic curves. Differ. Equ. 47 (2011), 14351441.Google Scholar
9Chèze, G. and Cluzeau, T.. On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems. J. Nonlinear Math. Phys. 20 (2013), 475479.CrossRefGoogle Scholar
10Chicone, C.. Quadratic gradients on the plane are generically Morse–Smale. J. Differ. Equ. 33 (1979), 159166.CrossRefGoogle Scholar
11Coll, B., Gasull, A. and Llibre, J.. Some theorems on the existence, uniqueness and non-existence of limit cycles for quadratic systems. J. Differ. Equ. 67 (1987), 372399.CrossRefGoogle Scholar
12Coppel, W. A.. Some quadratic systems with at most one limit cycles. Dyn. Reported 2 (1998), 6168.CrossRefGoogle Scholar
13Date, T.. Classification and analysis of two-dimensional homogeneous quadratic differential equations systems. J. Differ. Equ. 32 (1979), 311334.Google Scholar
14De Maesschalck, P. and Dumortier, F.. Classical Liénard equations of degree n = 6 can have [(n − 1)/2] + 2 limit cycles. J. Differ. Equ. 250 (2011), 21622176.CrossRefGoogle Scholar
15De Maesschalck, P. and Huzak, R.. Slow divergence integrals in classical Liénard equations near centers. J. Dyn. Differ. Equ. 27 (2015), 177185.CrossRefGoogle Scholar
16Dickson, R. J. and Perko, L. M.. Bounded quadratic systems in the plane. J. Differ. Equ. 6 (1970), 251273.CrossRefGoogle Scholar
17Dumortier, F.. Sharp upperbounds for the number of large amplitude limit cycles in polynomial Lienard systems. Discrete Contin. Dyn. Syst. 32 (2012), 14651479.CrossRefGoogle Scholar
18Dumortier, F. and Herssens, C.. Polynomial Liénard Equations near Infinity. J. Differ. Equ. 153 (1999), 129.CrossRefGoogle Scholar
19Dumortier, F., Herssens, C. and Perko, L.. Local bifurcations and a survey of bounded quadratic systems. J. Differ. Equ. 165 (2000), 430467.CrossRefGoogle Scholar
20Dumortier, F., Llibre, J. and Artés, J. C.. Qualitative theory of planar differential systems (Berlin: Springer–Verlag, 2006).Google Scholar
21Dumortier, F., Panazzolo, D. and Roussarie, R.. More limit cycles than expected in Liénard equations. Proc. Amer. Math. Soc. 135 (2007), 18951904.CrossRefGoogle Scholar
22Gasull, A. and Llibre, J.. On the nonsingular quadratic differential equations in the plane. Proc. Amer. Math. Soc. 104 (1988), 793794.CrossRefGoogle Scholar
23Gasull, A., Li-Ren, S. and Llibre, J.. Chordal quadratic systems. Rocky Mountain J. Math. 16 (1986), 751782.CrossRefGoogle Scholar
24Hua, D. D., Cairó, L., Feix, M. R., Govinder, K. S. and Leach, P. G. L.. Connection between the existence of first integrals and the Painlevé property in two-dimensional Lotka-Volterra and quadratic systems. Proc. Roy. Soc. London Ser. A 452 (1996), 859880.Google Scholar
25Kuznetsov, Y. A.. Elements of applied bifurcation theory (New York: Springer-Verlag, 1998).Google Scholar
26Li, C. and Llibre, J.. Uniqueness of limit cycles for Liénard differential equations of degree four. J. Differ. Equ. 252 (2012), 31423162.CrossRefGoogle Scholar
27Lins, A., de Melo, W. and Pugh, C. C.. On Liénard's equation. In Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976). Lecture Notes in Mathematics, vol. 597, pp. 335–357 (Berlin: Springer, 1977).CrossRefGoogle Scholar
28Liu, C., Chen, G. and Yang, J.. On the hyperelliptic limit cycles of Liénard systems. Nonlinearity 25 (2012), 16011611.CrossRefGoogle Scholar
29Llibre, J. and Schlomiuk, D.. The geometry of differential quadratic systems with a weak focus of third order. Can. J. Math. 56 (2004), 310343.CrossRefGoogle Scholar
30Llibre, J. and Valls, C.. Liouvillian first integrals for generalized Liénard polynomial differential systems. Adv. Nonlinear Stud. 13 (2013), 825835.CrossRefGoogle Scholar
31Llibre, J. and Zhang, X.. On the algebraic limit cycles of Liénard systems. Nonlinearity 21 (2008), 20112022.CrossRefGoogle Scholar
32Lunkevich, V. A. and Sibirskii, K. S.. Integrals of a general quadratic differential system in cases of a center. Differ. Equ. 18 (1982), 563568.Google Scholar
33Markus, L.. Global structure of ordinary differential equations in the plane. Trans. Amer. Math. Soc. 76 (1954), 127148.CrossRefGoogle Scholar
34Markus, L.. Quadratic differential equations and non-associative algebras. In Contributions to the Theory of Nonlinear Oscillations, Vol. V, pp 185213 (Princeton, NJ: Princeton University Press, 1960).Google Scholar
35Neumann, D. A.. Classification of continuous flows on 2-manifolds. Proc. Amer. Math. Soc. 48 (1975), 7381.CrossRefGoogle Scholar
36Newton, T. A.. Two dimensional homogeneous quadratic differential systems. SIAM Rev. 20 (1978), 120138.CrossRefGoogle Scholar
37Odani, K.. The limit cycle of the van der Pol equation is not algebraic. J. Differ. Equ. 115 (1995), 146152.CrossRefGoogle Scholar
38Peixoto, M. M.. In Dynamical Systems. Proc. of a Symposium held at the University of Bahia, pp. 389420 (New York: Acad. Press, 1973).Google Scholar
39Rebollo-Perdomo, S.. Medium amplitude limit cycles of some classes of generalized Liénard systems. Int. J. Bifurat. Chaos Appl. Sci. Eng. 25 (2015), 1550128.Google Scholar
40Reyn, J.. Phase portraits of planar quadratic systems. Mathematics and its Applications, vol. 583 (New York: Springer, 2007).Google Scholar
41Romanovski, V., Han, M. and Li, N.. Cyclicity of some Liénard Systems. Commun. Pure Appl. Anal. 14 (2015), 21272150.CrossRefGoogle Scholar
42Roset, I. G.. Nonlocal bifurcation of limit cycles and quadratic differential equations in the plane (in Russian), Samarkand University, Dissertation kand. Phys. Mat., 1991.Google Scholar
43Shen, J. and Han, M.. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete Contin. Dyn. Syst. 33 (2013), 30853108.CrossRefGoogle Scholar
44Sotomayor, J. and Paterlini, R.. Quadratic vector fields with finitely many periodic orbits. Lecture Notes in Math., vol. 1007 (Berlin: Springer, 1983).Google Scholar
45Vulpe, N. I.. Affine-invariant conditions for the topological discrimination of quadratic systems with a center. Differ. Equ. 19 (1983), 273280.Google Scholar
46Yang, L. and Zeng, X.. The convexity of closed orbits of Liénard systems. Bull. Sci. Math. 137 (2013), 215219.CrossRefGoogle Scholar
47Yang, L. and Zeng, X.. The period function of Liénard systems. Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 205221.CrossRefGoogle Scholar
48Yanqian, Ye. Theory of limit cycles. Trans. Math. Monographs, Amer. Math. Soc. Vol 66, 1986.Google Scholar
49Zoladek, H.. Algebraic invariant curves for the Liénard equation. Trans. Amer. Math. Soc. 350 (1998), 16811701.CrossRefGoogle Scholar