Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T22:55:21.080Z Has data issue: false hasContentIssue false

The Palais–Smale conditions for the Yang–Mills functional

Published online by Cambridge University Press:  14 November 2011

D. R. Wilkins
Affiliation:
Department of Pure Mathematics, Trinity College, Dublin 2, Republic of Ireland

Synopsis

We consider the Yang–Mills functional denned on connections on a principal bundle over a compact Riemannian manifold of dimension 2 or 3. It is shown that if we consider the Yang–Mills functional as being defined on an appropriate Hilbert manifold of orbits of connections under the action of the group of principal bundle automorphisms, then the functional satisfies the Palais–Smale condition.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atiyah, M. F. and Bott, R.. The Yang-Mills functional over Riemannian surfaces. Philos. Trans. Roy. Soc. London Ser. A 308 (1982), 524615.Google Scholar
2Atiyah, M. F., Hitchin, N. J. and Singer, I. M.. Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362 (1978), 425461.Google Scholar
3Bourguignon, J.-P. and Lawson, H. B.. Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (1980), 189230.CrossRefGoogle Scholar
4Donaldson, S. K.. An application of gauge theory to four dimensional topology. J. Differential Geom. 18 (1983), 237315.CrossRefGoogle Scholar
5Freed, D. S. and Uhlenbeck, K. K.. Instantons and four-manifolds (New York: Springer, 1984).CrossRefGoogle Scholar
6Mitter, P. K. and Viallet, C. M.. On the bundle of connections and the gauge orbit manifold in Yang-Mills theory. Comm. Math. Phys. 79 (1981), 457472.CrossRefGoogle Scholar
7Narasimhan, M. S. and Ramadas, T. R.. Geometry of SU(2) gauge fields. Comm. Math. Phys. 67 (1979), 121136.CrossRefGoogle Scholar
8Palais, R. S.. Morse theory on Hilbert manifolds. Topology 2 (1963), 299349.CrossRefGoogle Scholar
9Palais, R. S.. Lusternik-Schnirelman theory on Banach manifolds. Topology 5 (1966), 115132.CrossRefGoogle Scholar
10Palais, R. S.. Foundations of global non-linear analysis (New York: Benjamin, 1968).Google Scholar
11Parker, T.. Gauge theories on 4-dimensional Riemannian manifolds. Comm. Math. Phys. 85 (1982), 563602.CrossRefGoogle Scholar
12Sedlacek, S.. A direct method for minimizing the Yang-Mills functional. Comm. Math. Phys. 86 (1982), 515527.CrossRefGoogle Scholar
13Taubes, C. H.. The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on ℝ3. Part I. Comm. Math. Phys. 86 (1982), 257298.CrossRefGoogle Scholar
14Taubes, C. H.. Min-max theory for the Yang-Mills-Higgs equations. Comm. Math. Phys. 97 (1985), 473540.CrossRefGoogle Scholar
15Taubes, C. H.. Path-connected Yang-Mills moduli spaces. J. Differential Geom. 19 (1984), 337392.CrossRefGoogle Scholar
16Uhlenbeck, K. K.. Connections with Lp bounds on curvature. Comm. Math. Phys. 83 (1982), 3142.CrossRefGoogle Scholar
17Uhlenbeck, K. K.. Variational problems for gauge fields. In Seminar on differential geometry. Ann. of Math. Studies 102 (New Jersey: Princeton University Press, 1982).Google Scholar
18Wilkins, D. R.. Elliptic operators, connections and gauge transformations (Ph.D. thesis, University of Durham, 1985).Google Scholar