Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:59:53.209Z Has data issue: false hasContentIssue false

On the zeros of (f″ + αf)f and a result of Steinmetz

Published online by Cambridge University Press:  14 November 2011

J. K. Langley
Affiliation:
Department of Mathematical Sciences, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland, U.K.

Synopsis

We characterise all functions f meromorphic of finite order in the plane such that fF has only finitely many zeros, where F = f″ + αf for some constant α. The problem is related to results of N. Steinmetz and others.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Frank, G.. Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen. Math. Z. 149 (1976), 2936.CrossRefGoogle Scholar
2Frank, G. and Hellerstein, S.. On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients. Proc. London Math. Soc. (3) 53 (1986), 407428.CrossRefGoogle Scholar
3Frank, G., Hennekemper, W. and Polloczek, G.. Uber die Nullstellen meromorpher Funktionen und ihrer Ableitungen. Math. Ann. 225 (1977), 145154.CrossRefGoogle Scholar
4Hayman, W. K.. Picard values of meromorphic functions and their derivatives. Ann. of Math. 70 (1959), 942.CrossRefGoogle Scholar
5Hayman, W. K.. Meromorphic functions (Oxford: Clarendon Press, 1964).Google Scholar
6Hille, E.. Lectures on ordinary differential equations (Reading, Mass: Addison-Wesley, 1969).Google Scholar
7Hille, E.. Ordinary differential equations in the complex domain (New York: Wiley, 1976).Google Scholar
8Langley, J. K.. On the zeros of linear differential polynomials with small rational coefficients. J. London Math. Soc. (to appear).Google Scholar
9Mues, E.. Uber ein Vermutung von Hayman. Math. Z. 119 (1972), 1120.CrossRefGoogle Scholar
10Steinmetz, N.. On the Zeros of (preprint).Google Scholar
11Valiron, G.. Lectures on the general theory of integral functions (Toulouse: Edouard Privat, 1923).Google Scholar
12Wittich, H.. Neure Untersuchungen iiber eindeutige analytische Funktionen. Ergcbnisse der Math., Heft 8 (Berlin: Springer, 1955).CrossRefGoogle Scholar