Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T22:34:45.106Z Has data issue: false hasContentIssue false

Neumann to Steklov eigenvalues: asymptotic and monotonicity results

Published online by Cambridge University Press:  16 January 2017

Pier Domenico Lamberti
Affiliation:
Dipartimento di Matematica ‘Tullio Levi-Civita’, Università degli Studi di Padova, Via Trieste 63, 35126 Padova, Italy ([email protected]; [email protected])
Luigi Provenzano
Affiliation:
Dipartimento di Matematica ‘Tullio Levi-Civita’, Università degli Studi di Padova, Via Trieste 63, 35126 Padova, Italy ([email protected]; [email protected])

Extract

We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)