Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:49:12.696Z Has data issue: false hasContentIssue false

The Lp Minkowski problem for q-capacity

Published online by Cambridge University Press:  21 September 2020

Zhengmao Chen*
Affiliation:
LCSM (Ministry of Education), College of Mathematics and Statistics, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China ([email protected])

Abstract

In the present paper, we first introduce the concepts of the Lpq-capacity measure and Lp mixed q-capacity and then prove some geometric properties of Lpq-capacity measure and a Lp Minkowski inequality for the q-capacity for any fixed p ⩾ 1 and q > n. As an application of the Lp Minkowski inequality mentioned above, we establish a Hadamard variational formula for the q-capacity under p-sum for any fixed p ⩾ 1 and q > n, which extends results of Akman et al. (Adv. Calc. Var. (in press)). With the Hadamard variational formula, variational method and Lp Minkowski inequality mentioned above, we prove the existence and uniqueness of the solution for the Lp Minkowski problem for the q-capacity which extends some beautiful results of Jerison (1996, Acta Math.176, 1–47), Colesanti et al. (2015, Adv. Math.285, 1511–588), Akman et al. (Mem. Amer. Math. Soc. (in press)) and Akman et al. (Adv. Calc. Var. (in press)). It is worth mentioning that our proof of Hadamard variational formula is based on Lp Minkowski inequality rather than the direct argument which was adopted by Akman (Adv. Calc. Var. (in press)). Moreover, as a consequence of Lp Minkowski inequality for q-capacity, we get an interesting isoperimetric inequality for q-capacity.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, A. D.. On the surface area measure of convex bodies. Mat. Sb. (N.S.) 6 (1939), 167174.Google Scholar
Alexandrov, A.. Smoothness of the convex surface of bounded Gaussian curvature. C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 195199.Google Scholar
Aleksandrov, A. D.. Selected Works. Part I. Selected Scientific Papers. In Classics of Soviet mathematics trans. from the Russian by P. S. Naidu (eds. Reshetnyak, Yu. G. and Kutateladze, S. S.), vol. 4, (Amsterdam: Gordon and Breach, 1996), 108112.Google Scholar
Alexandrov, A. D.. Convex polyhedra. Translated from the 1950 Russian edition by N. S. Dairbekov. In With comments and bibliography by V. A. Zalgaller and appendices by L.A. Shor and Yu. A. Volkov (eds. Kutateladze, S. S. and Sossinsky, A. B.), Springer Monographs in Mathematics (Berlin: Springer-Verlag, 2005), 317320.Google Scholar
Akman, M., Gong, J. S., Hineman, J., Lewis, J. and Vogel, A.. The Brunn–Minkowski inequality and a Minkowski problem for nonlinear capacity. Mem. Amer. Math. Soc. (in press), arXiv.1709.00447, 1108.Google Scholar
Akman, M., Lewis, J., Saari, O. and Vogel, A.. The Brunn–Minkowski inequality and a Minkowski problem for $\mathcal {A}$-harmonic Green's function. Adv. Calc. Var. (in press), arXiv.1810.03752, 176, https://doi.org/10.1515/acv-2018-0064.Google Scholar
Akman, M., Lewis, J. and Vogel, A.. Note on an eigenvalue problem with applications to a Minkowski type regularity problem in ℝn. Calc. Var. 59 (2020), 47, https://doi.org/10.1007/s00526-020-1697-7.CrossRefGoogle Scholar
Bakelman, I. J.. Convex analysis and nonlinear geometric elliptic equations. In With an obituary for the author by William Rundell (ed. Taliaferro, Steven D.) (Berlin: Springer-Verlag, 1994), 7586.Google Scholar
Bianchi, G., Böröczky, K. J. and Colesanti, A.. Smoothness in the L p Minkowski Problem for p < 1. J. Geom. Anal. 30 (2020), 680705), https://doi.org/10.1007/s12220-019-00161-y.CrossRefGoogle Scholar
Bianchi, G., Böröczky, K. J., Colesanti, A. and Yang, D., The L p-Minkowski problem for − n < p < 1. Adv. Math. 341 (2019), 493535.CrossRefGoogle Scholar
Bianchi, G., Böröczky, K. J. and Colesanti, A.. The Orlicz version of the L p Minkowski problem on $\mathbb {S}^{n-1}$ for − n < p < 0. arXiv:1812.05213, 122.Google Scholar
Bonnesen, T. and Fenchel, W.. Theory of convex bodies translated from the German. In (ed. Boron, L. and Christenson, C. and Smith, B.) (Moscow, ID: BCS Associates, 1987), 121131.Google Scholar
Borell, C.. Capacitary inequalities of the Brunn–Minkowski type. Math. Ann. 263 (1983), 179184.CrossRefGoogle Scholar
Böröczky, K. J. and Fodor, F.. The L p dual Minkowski problem for p > 1 and q > 0. J. Differ. Equ. 266 (2019), 79808033.CrossRefGoogle Scholar
Böröczky, K. J., Lutwak, E., Yang, D. and Zhang, G.. The logarithmic Minkowski problem. J. Amer. Math. Soc. 26 (2013), 831852.CrossRefGoogle Scholar
Busemann, H.. Convex surfaces. Interscience tracts in pure and applied mathematics, no. 6. (New York, London: Interscience Publishers Inc., 1958), 6067.Google Scholar
Caffarelli, L. A.. Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130 (1989), 189213.CrossRefGoogle Scholar
Caffarelli, L. A.. A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. Math. 131 (1990), 129134.CrossRefGoogle Scholar
Caffarelli, L. A.. Interior W 2, p estimates for solutions of the Monge–Ampère equation. Ann. Math. 131 (1990), 135150.CrossRefGoogle Scholar
Caffarelli, L. A.. Some regularity properties of solutions of Monge–Ampère equation. Commun. Pure Appl. Math. 44 (1991), 965969.CrossRefGoogle Scholar
Caffarelli, L. A., Jerison, D. and Lieb, E. H.. On the case of equality in the Brunn–Minkowski inequality for capacity. Adv. Math. 117 (1996), 193207.CrossRefGoogle Scholar
Chen, C., Huang, Y. and Zhao, Y.. Smooth solutions to the L p dual Minkowski problem. Math. Ann. 373 (2019), 953976, https://doi.org/10.1007/s00208-018-1727-3.CrossRefGoogle Scholar
Cheng, S.-Y. and Yau, S.-T.. On the regularity of the solution of the n-dimensional Minkowski problem. Commun. Pure Appl. Math. 29 (1976), 495516.CrossRefGoogle Scholar
Chen, S. and Li, Q.. On the planar dual Minkowski problem. Adv. Math. 333 (2018), 87117.CrossRefGoogle Scholar
Chen, S., Li, Q. and Zhu, G.. The logarithmic Minkowski problem for non-symmetric measures. Trans. Amer. Math. Soc. 371 (2019), 26232641.CrossRefGoogle Scholar
Chen, Z. and Dai, Q.. The L p Minkowski problem for torsion. J. Math. Anal. Appl. (2020), https://doi.org/10.1016/j.jmaa.2020.124060.CrossRefGoogle Scholar
Chou, K.-S. and Wang, X.-J.. The L p-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205 (2006), 3383.CrossRefGoogle Scholar
Colesanti, A.. Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 194 (2005), 105140.CrossRefGoogle Scholar
Colesanti, A., Nyström, K., Salani, P., Xiao, J., Yang, D. and Zhang, G.. The Hadamard variational formula and the Minkowski problem for p-capacity. Adv. Math. 285 (2015), 15111588.CrossRefGoogle Scholar
Colesanti, A. and Fimiani, M.. The Minkowski problem for the torsional rigidity. Indiana Univ. Math. J. 59 (2010), 10131039.CrossRefGoogle Scholar
Evans, L. C. and Gariepy, R. F.. Measure theory and fine properties of functions (Boca Raton, FL: CRC Press, 2015).CrossRefGoogle Scholar
Fenchel, W. and Jessen, B.. Mengenfunktionen und konvexe Körper. Danske Vid. Selsk. Mat.-Fys. Medd. 16 (1938), 131.Google Scholar
Firey, W.. p-means of convex bodies. Math. Scand. 10 (1962), 1725.CrossRefGoogle Scholar
Guan, B. and Guan, P.. Convex hypersurfaces of prescribed curvatures. Ann. Math. 156 (2002), 655673.CrossRefGoogle Scholar
Guan, P. and Ma, X. N.. The Christoffel–Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151 (2003), 553577.CrossRefGoogle Scholar
Guan, P. and Chao, X.. L p Christoffel–Minkowski problem the case 1 < p < k + 1. Calc. Var. 57 (2018), 69, https://doi.org/10.1007/s00526-018-1341-y.CrossRefGoogle Scholar
Gutièrrez, C. E.. The Monge–Ampère equation, 2nd edn (Birkhäuser: Springer, 2016), 2831.CrossRefGoogle Scholar
Hug, D., Lutwak, E., Yang, D. and Zhang, G., On the L p Minkowski problem for Polytopes. Discrete Comput. Geom. 33 (2005), 699715.CrossRefGoogle Scholar
Hong, H., Ye, D. and Zhang, N.. The p-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems. Calc. Var. 57 (2018), 5, https://doi.org/10.1007/s00526-017-1278-6.CrossRefGoogle Scholar
Hu, C. Q., Ma, X. N. and Shen, C. L.. On the Christoffel–Minkowski problem of Firey's p-sum. Calc. Var. 21 (2004), 137, https://doi.org/10.1007/s00526-003-0250-9.CrossRefGoogle Scholar
Huang, Y. and Zhao, Y.. On the L p dual Minkowski problem. Adv. Math. 332 (2018), 5784.CrossRefGoogle Scholar
Huang, Y., Liu, J. and Xu, L.. On the uniqueness of L p-Minkowski problems: the constant p-curvature case in ℝ3. Adv. Math. 281 (2015), 906927.CrossRefGoogle Scholar
Huang, Y., Lutwak, E., Yang, D. and Zhang, G.. Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216 (2016), 325388.CrossRefGoogle Scholar
Huang, Y., Lutwak, E., Yang, D. and Zhang, G., The L p Aleksandrov problem for L p-integral curvature. J. Differ. Geom. 110 (2018), 129.CrossRefGoogle Scholar
Jerison, D.. Prescribing harmonic measure on convex domains. Invent. Math. 105 (1991), 375400.CrossRefGoogle Scholar
Jerison, D.. A Minkowski problem for electrostatic capacity. Acta Math. 176 (1996), 147.CrossRefGoogle Scholar
Jerison, D.. The direct method in the calculus of variations for convex bodies. Adv. Math. 122 (1996), 262279.CrossRefGoogle Scholar
Jian, H. Y., Lu, J. and Wang, X.-J.. Nonuniqueness of solutions to the L p-Minkowski problem. Adv. Math. 281 (2015), 845856.CrossRefGoogle Scholar
Lewis, J. and Nyström, K.. Regularity and free boundary regularity for the p-Laplace operator in Reifenberg flat and Ahlfors regular domains. J. Amer. Math. Soc. 25 (2012), 827862.CrossRefGoogle Scholar
Lewy, H.. On differential geometry in the large I. Minkowski's problem. Trans. Amer. Math. Soc. 43 (1938), 258270.Google Scholar
Lutwak, E.. The Brunn–Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differ. Geom. 38 (1993), 131150.CrossRefGoogle Scholar
Lutwak, E. and Oliker, V.. On the regularity of solutions to a generalization of the Minkowski problem. J. Differ. Geom. 41 (1995), 227256.CrossRefGoogle Scholar
Lutwak, E., Yang, D. and Zhang, G.. L p dual curvature measures. Adv. Math. 329 (2018), 85132.CrossRefGoogle Scholar
Minkowski, H.. Allgemeine Lehrsätze über die convexen (Göttingen: Polyeder. Nachr. Ges. Wiss., 1897, 198219).Google Scholar
Minkowski, H.. Volumen und Oberfläche. Math. Ann. 57( 1903), 447495.CrossRefGoogle Scholar
Nirenberg, L.. The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6 (1953), 337394.CrossRefGoogle Scholar
Pogorelov, A. V.. The Minkowski Multidimensional problem (Washington, DC: V.H. Winston & Sons, 1978), 2232.Google Scholar
Schneider, R.. Convex bodies. The Brunn–Minkowski theory, 2nd edn (Cambridge, Cambridge Univ. Press, 2014).Google Scholar
Stancu, A.. The discrete planar L 0-Minkowski problem. Adv. Math. 167 (2002), 160174.CrossRefGoogle Scholar
Xiao, J.. Towards Conformal Capacities in Euclidean Spaces, arXiv:1309.3648, 1–33.Google Scholar
Xiao, J.. Exploiting log-capacity in convex geometry. Asian J. Math. 22 (2018), 955979.CrossRefGoogle Scholar
Xiong, G., Xiong, J. and Xu, L.. The L p capacitary Minkowski problem for polytopes J. Funct. Anal. 277 (2019), 31313155.CrossRefGoogle Scholar
Zhao, Y.. The dual Minkowski problem with negative indices. Calc. Var. 56 (2017), 18. https://doi.org/10.1007/s00526-017-1124-x.CrossRefGoogle Scholar
Zhu, G.. The logarithmic Minkowski problem for polytopes. Adv. Math. 262 (2014), 909931.CrossRefGoogle Scholar
Zou, D. and Xiong, G.. L p Minkowski problem for electrostatic $\mathfrak {p}$-capacity. J. Differ. Geom. (in press), arXiv 1702.08120, 1–37.Google Scholar