Article contents
Inverse semigroups generated by nilpotent transformations
Published online by Cambridge University Press: 14 November 2011
Extract
Let X be a set with infinite cardinality m and let B be the Baer-Levi semigroup, consisting of all one-one mappings a:X→X for which ∣X/Xα∣ = m. Let Km=<B 1B>, the inverse subsemigroup of the symmetric inverse semigroup ℐ(X) generated by all products β−γ, with β,γ∈B. Then Km = <N2>, where N2 is the subset of ℐ(X) consisting of all nilpotent elements of index 2. Moreover, Km has 2-nilpotent-depth 3, in the sense that
Let Pm be the ideal {α∈Km: ∣dom α∣<m} in Km and let Lm be the Rees quotient Km/Pm. Then Lm is a 0-bisimple, 2-nilpotent-generated inverse semigroup with 2-nilpotent-depth 3. The minimum non-trivial homomorphic image of Lm also has these properties and is congruence-free.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 99 , Issue 1-2 , 1984 , pp. 153 - 162
- Copyright
- Copyright © Royal Society of Edinburgh 1984
References
- 8
- Cited by