Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T07:48:46.776Z Has data issue: false hasContentIssue false

Gewöhnliche lineare Differentialgleichungen n−ter Ordnung mit Distributionskoeffizienten

Published online by Cambridge University Press:  14 November 2011

Rainer Pfaff
Affiliation:
Fachbereich Mathematik, Technische Hochschule Darmstadt, West Germany

Synopsis

We give a formula (4) for a variety of ordinary linear differential equations of order n with distributional coefficients. There appear as coefficients distributions of order kn/2, i.e. these distributions are kth distributional derivatives of locally L-integrable functions. With a suitable transformation (7) the differential equations can be transformed into first order systems (8) with integrable coefficients. From this follows the existence of a continuous solution, which can be uniquely determined by proper initial conditions.

The coefficients in the differential equations considered are chosen as general as possible but such that a transformation into a system with integrable coefficients can be performed, and that all products are defined by Leibniz' formula.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Guggenheimer, H.. Geometrie theory of differential equations, I: second order linear equations. SIAM J. Math. Anal. 2 (1971), 233241.CrossRefGoogle Scholar
2Guggenheimer, H.. Geometric theory of differential equations III, second order equations on the reals. Arch. Rational Mech. Anal. 41 (1971), 219240.CrossRefGoogle Scholar
3Kurzweil, J.. Linear differential equations with distributions as coefficients. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 557560.Google Scholar
4Ligeza, J.. On generalized solutions of linear differential equations of order n. Uniw. Śląski w Katowicach Prace Naukowe-Prace Mat. 3 (1973), 101108.Google Scholar
5Pfaff, R.. Zur Theorie der gewöhnlichen linearen Differentialgleichung zweiter Ordnung mit Distributionskoeffizient (Technische Hochschule Darmstadt. Dissertation, 1978). UMI No. 79–70, 022.Google Scholar
6Pfaff, R.. Gewöhnliche lineare Differentialgleichungen zweiter Ordnung mit Distributionskoeffizient. Arch. Math. (Basel) 32 (1979), 469478.CrossRefGoogle Scholar
7Pfaff, R.. Gewöhnliche lineare differentialgleichungen n-ter Ordnung mit Distributionskoeffizienten (mit Anhang) (Fachbereich Mathematik der Technischen Hochschule Darmstadt. Preprint No. 466, 1978).Google Scholar