No CrossRef data available.
Article contents
A generalized skein relation for Khovanov homology and a categorification of the θ-invariant
Published online by Cambridge University Press: 05 November 2020
Abstract
The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 151 , Issue 6 , December 2021 , pp. 1731 - 1757
- Copyright
- Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
Aicardi, F. and Juyumaya, J.. Markov trace on the algebra of braids and ties. Mosc. Math. J. 16 (2016), 397–431.CrossRefGoogle Scholar
Aicardi, F. and Juyumaya, J.. Tied links. J. Knot Theory Ramifications 25 (2016), 1641001.CrossRefGoogle Scholar
Bar-Natan, D.. On Khovanov's categorification of the Jones polynomial. Algebr. Geom. Topol. 2 (2002), 337–370.CrossRefGoogle Scholar
Chlouveraki, M.. From the Framisation of the Temperley-Lieb algebra to the Jones polynomial: an algebraic approach. Knots, Low-Dimens. Topol. Appl., Springer PROMS 284 (2019), 247–276.Google Scholar
Chlouveraki, M., Juyumaya, J., Karvounis, K. and Lambropoulou, S.. Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebras. Int. Math. Res. Not. 2020 (2020), 214–286.CrossRefGoogle Scholar
Goundaroulis, D., Juyumaya, J., Kontogeorgis, A. and Lambropoulou, S.. Framization of the Temperley-Lieb algebra. Math. Res. Lett. 24 (2017), 299–345.CrossRefGoogle Scholar
Goundaroulis, D. and Lambropoulou, S.. A new two-variable generalization of the Jones polynomial. J. Knot Theory Ramif. 28 (2019), 1940005.CrossRefGoogle Scholar
Kauffman, L. H. and Lambropoulou, S.. New skein invariants of links. J. Knot Theory Ramif. 28 (2019), 1940018.CrossRefGoogle Scholar
Kronheimer, P. B. and Mrowka, T. S.. Khovanov homology is an unknot-detector. Publ. Math. IHES 113 (2011), 97–208.CrossRefGoogle Scholar
Khovanov, M.. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), 359–426.CrossRefGoogle Scholar
Lickorish, W. B. R. and Millett, K. C.. A polynomial invariant of oriented links. Topology 26 (1987), 107–141.CrossRefGoogle Scholar
Terras, A.. Zeta functions of graphs. A stroll through the garden, Cambridge Studies in Advanced Mathematics 128 (Cambridge: Cambridge University Press, 2011).Google Scholar
Turner, P.. Five Lectures on Khovanov Homology. arXiv:math/0606464.Google Scholar
Wehrli, S. M.. Khovanov Homology and Conway Mutation. arXiv:math/0301312.Google Scholar
Weibel, C. A.. An introduction to homological algebra (Cambridge: Cambridge University Press, 1994).CrossRefGoogle Scholar