Published online by Cambridge University Press: 26 March 2007
We consider an elliptic boundary problem in a bounded region Ω ⊂ ℝn wherein the spectral parameter is multiplied by a real-valued weight function with the property that it, together with its reciprocal, is essentially bounded in Ω. The problem is considered under limited smoothness assumptions and under an ellipticity with parameter condition. Then, fixing our attention upon the operator induced on L2(Ω) by the boundary problem under null boundary conditions, we establish results pertaining to the asymptotic behaviour of the eigenvalues of this operator under weaker smoothness assumptions than have hitherto been supposed.