Published online by Cambridge University Press: 25 September 2020
Starting from three-dimensional non-linear elasticity under the restriction of incompressibility, we derive reduced models to capture the behaviour of strings in response to external forces. Our Γ-convergence analysis of the constrained energy functionals in the limit of shrinking cross-sections gives rise to explicit one-dimensional limit energies. The latter depend on the scaling of the applied forces. The effect of local volume preservation is reflected either in their energy densities through a constrained minimization over the cross-section variables or in the class of admissible deformations. Interestingly, all scaling regimes allow for compression and/or stretching of the string. The main difficulty in the proof of the Γ-limit is to establish recovery sequences that accommodate the non-linear differential constraint imposed by the incompressibility. To this end, we modify classical constructions in the unconstrained case with the help of an inner perturbation argument tailored for 3d-1d dimension reduction problems.