Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T19:28:47.856Z Has data issue: false hasContentIssue false

Unit regular monoids

Published online by Cambridge University Press:  14 November 2011

J. B. Hickey
Affiliation:
Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland, U.K
M. V. Lawson
Affiliation:
Ysgol Fathemateg, Prifysgol Cymru Bangor, Stryd y Deon, Bangor, Gwynedd LL57 1UT, Wales, U.K

Abstract

We derive necessary and sufficient conditions for a unit regular monoid to have a uniquely unit regular, idempotent separating cover.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Blyth, T. S. and McFadden, R.. Unit orthodox semigroups. Glasgow Math. J. 24 (1983), 3942.CrossRefGoogle Scholar
2Goodearl, K. R.. Von Neumann regular rings (London: Pitman, 1979).Google Scholar
3Hartwig, R. E.. How to partially order regular elements. Math. Japonica 25 (1980), 113.Google Scholar
4Hickey, J. B.. Semigroups under a sandwich operation. Proc. Edinburgh Math. Soc. 26 (1983), 371–82.CrossRefGoogle Scholar
5Higgins, P. M.. Techniques of semigroup theory (Oxford: Oxford University Press, 1992).CrossRefGoogle Scholar
6Howie, J. M.. An introduction to semigroup theory (London: Academic Press, 1976).Google Scholar
7Joubert, G.. Contributions à l'étude des catégories ordonnées: applications aux structures feuilletées. Cahiers Topologie Geom. Differentielle Categoriques 8(1966), 1117.Google Scholar
8McAlister, D. B.. Some covering and embedding theorems for inverse semigroups. J. Austral. Math. Soc. Ser. A 22 (1976), 188211.CrossRefGoogle Scholar
9McAlister, D. B.. Embedding inverse semigroups in coset semigroups. Semigroup Forum 20 (1980), 255–67.CrossRefGoogle Scholar
10McAlister, D. B.. Rees matrix covers for locally inverse semigroups. Trans. Amer. Math. Soc. 277 (1983), 727–38.CrossRefGoogle Scholar