Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T06:47:56.593Z Has data issue: false hasContentIssue false

The second moment of symmetric square L-functions over Gaussian integers

Published online by Cambridge University Press:  11 January 2021

Olga Balkanova
Affiliation:
Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina st., Moscow, 119991, Russia ([email protected]; [email protected])
Dmitry Frolenkov
Affiliation:
Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina st., Moscow, 119991, Russia ([email protected]; [email protected])

Abstract

We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkanova, O., Chatzakos, D., Cherubini, G., Frolenkov, D. and Laaksonen, N.. Prime geodesic theorem in the 3-dimensional hyperbolic space. Trans. Am. Math. Soc. 372 (2019),53555374.CrossRefGoogle Scholar
Balkanova, O. and Frolenkov, D.. The mean value of symmetric square L-functions. Algebra Number Theory 12 (2018), 3559.CrossRefGoogle Scholar
Balkanova, O. and Frolenkov, D.. Prime geodesic theorem for the Picard manifold. Adv. Math. 375 (2020), 107377.CrossRefGoogle Scholar
Balog, A., Biro, A., Cherubini, G. and Laaksonen, N.. Bykovskii-type theorem for the Picard manifold, doi:10.1093/imrn/rnaa128.CrossRefGoogle Scholar
Farid Khwaja, S. and Olde Daalhuis, A. B.. Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (2014), 667710. https://doi.org/10.1142/S0219530514500389.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M.. In Table of Integrals, Series, and Products, 7th edn (eds. Jeffrey, A. and Zwillinger, D.) (New York: Academic Press, 2007).Google Scholar
Ivic, A. and Jutila, M.. On the moments of Hecke series at central points II. Funct. Approx. Com. Math. 31 (2003), 93108.Google Scholar
Jones, D. S.. Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (2001), 369389.CrossRefGoogle Scholar
Koyama, S. Y.. Prime geodesic theorem for the Picard manifold under the mean-Lindelöf hypothesis. Forum. Math. 13 (2001), 781793.CrossRefGoogle Scholar
Motohashi, Y.. New analytic problems over imaginary quadratic number fields. In Number theory (eds. Jutila, M. and Metsänkylä, T.). pp. 255279 (Berlin: de Gruyter, 2001).Google Scholar
Nakasuji, M.. Prime geodesic theorem via the explicit formula for ψ for hyperbolic 3-manifolds. Proc. Jpn. Acad. Ser. A Math. Sci. 77 (2001), 130133.CrossRefGoogle Scholar
Nelson, P.. Eisenstein series and the cubic moment for PGL(2), arXiv:1911.06310 [math.NT].Google Scholar
Ng, M.-H.. Moments of automorphic L-functions, University of Hong Kong, Ph.D. thesis, 2016.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clarke, C. W.. NIST Handbook of mathematical functions (Cambridge: Cambridge University Press, 2010).Google Scholar
Sarnak, P.. The arithmetic and geometry of some hyperbolic three manifolds. Acta Math. 151 (1983), 253295.CrossRefGoogle Scholar
Shimura, G.. On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. (3) 31 (1975), 7998.CrossRefGoogle Scholar
Szmidt, J.. The Selberg trace formula for the Picard group SL(2 Z[i]). Acta. Arith. 42 (1983), 391424.CrossRefGoogle Scholar