Published online by Cambridge University Press: 14 November 2011
We show that for a large class of Monge-Ampère equations, generalised solutions on a uniformly convex domain Ω⊂ℝn are classical solutions on any pre-assigned subdomain Ω′⋐Ω, provided the solution is almost extremal in a suitable sense. Alternatively, classical regularity holds on subdomains of Ω which are sufficiently distant from ∂Ω. We also show that classical regularity may fail to hold near ∂Ω in the nonextremal case. The main example of the class of equations considered is the equation of prescribed Gauss curvature.