Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:56:12.508Z Has data issue: false hasContentIssue false

Positive solutions of superlinear boundary value problems

Published online by Cambridge University Press:  14 November 2011

Heinrich Voss
Affiliation:
Fachbereich Mathematik, Universität Essen-GHS, Universitätsstrasse 3, D-4300 Essen 1, West Germany

Synopsis

Using a fixed point theorem on operators expanding a cone in a Banach space we prove the existence of positive solutions of superlinear boundary value problems

At the same time we get bounds (or even inclusions) of positive solutions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620709.CrossRefGoogle Scholar
2Brown, K. J. and Budin, H.. Multiple positive solutions for a class of nonlinear boundary value problems. J. Math. Anal. Appl. 60 (1977), 329338.CrossRefGoogle Scholar
3Gustafson, G. A. and Schmitt, K.. Nonzero solutions of boundary value problems for second order ordinary and delay differential equations. J. Differential Equations 12 (1972), 129147.CrossRefGoogle Scholar
4Hartman, P.. Ordinary Differential Equations (Baltimore: The Johns Hopkins University, 1973).Google Scholar
5Laetsch, T.. Existence and bounds for multiple positive solutions of nonlinear equations. SIAM J. Appl. Math. 18 (1970), 389400.CrossRefGoogle Scholar
6Laetsch, T.. The number of solutions of nonlinear two point boundary value problems. Indiana Univ. Math. J. 20 (1970), 113.CrossRefGoogle Scholar
7Legget, R. W. and Williams, L. R.. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979), 673688.CrossRefGoogle Scholar
8Sprekels, J.. Existenz und erste Einschließung positiver Lösungen bei superlinearen Randwertaufgaben zweiter Ordnung. Numer. Math. 26 (1976), 421428.CrossRefGoogle Scholar
9Sprekels, J.. Finile dimensional cone iteration techniques for superlinear Hammerstein equations. Numer. Funct. Anal. Optim. 1 (1979), 289314.CrossRefGoogle Scholar
10Voss, H.. Nichtlineare Eigenwertaufgaben und Kegeliterationen. Internal. Series Numer. Math. 43 (1979), 189203.Google Scholar
11Voss, H.. Einschließungsaussagen für positive Lösungen superlinearer Randwertaufgaben. Applicable Anal., to appear.Google Scholar