We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
holds true. It is known that such an estimate holds if either the tangential or normal component of ω vanishes on the boundary ∂Ω. We show that the vanishing tangential component condition is a special case of a more general one. In two dimensions, we give an interpolation result between these two classical boundary conditions.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
1Amrouche, C., Bernardi, C., Dauge, M. and Girault, V.. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci.21 (1998), 823–864.Google Scholar
2
2Arnold, N., Falk, S. and Winther, R.. Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006), 1–155.Google Scholar
3
3Bernard, J. M.. Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chin. Ann. Math. Ser. B32 (2011), 823–846.Google Scholar
4
4Ben Belgacem, F., Bernardi, C., Costabel, M. and Dauge, M.. Un résultat de densité pour les équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math324 (1997), 731–736.Google Scholar
5
5Bonizzoni, F., Buffa, A. and Nobile, F.. Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term. IMA J. Numer. Anal34 (2014), 1328–1360.Google Scholar
6
6Ciarlet, P., Hazard, C. and Lohrengel, S.. Les équations de Maxwell dans un polyèdre: un résultat de densité. C. R. Acad. Sci. Paris Sŕ. I Math.326 (1998), 1305–1310.Google Scholar
7
7Costabel, M.. A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains. Math. Methods Appl. Sci.12 (1990), 365–368.Google Scholar
8
8Costabel, M.. A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl.157 (1991), 527–541.Google Scholar
9
9Costabel, M. and Dauge, M.. Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris Sér. I Math.327 (1998), 849–854.Google Scholar
10
10Csató, G.. Some boundary value problems for differential forms, Ph.D Thesis, EPFL Lausanne (2012).Google Scholar
11
11Csató, G.. On an integral formula for differential forms and its applications on manifolds with boundary. Analysis33 (2013), 349–366.Google Scholar
12
12Csató, G. and Dacorogna, B.. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete Continuous Dynam. Syst., Series S5 (2012), 531–544.Google Scholar
13
13Csató, G., Dacorogna, B. and Kneuss, O.. The pullback equation for differential forms (Boston: Birkhäuser, 2012).Google Scholar
14
14Csató, G., Dacorogna, B. and Sil, S.. On the best constant in Gaffney inequality. J. Funct. Anal.274 (2018), 461–503.Google Scholar
15
15Dautray, R. and Lions, J. L.. Analyse mathématique et calcul numérique (Paris: Masson, 1988).Google Scholar
16
16Friedrichs, K. O.. Differential forms on Riemannian manifolds. Comm. Pure Appl. Math.8 (1955), 551–590.Google Scholar
17
17Gaffney, M. P.. The harmonic operator for exterior differential forms. Proc. Nat. Acad. of Sci. U. S. A.37 (1951), 48–50.Google Scholar
18
18Gaffney, M. P.. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc78 (1955), 426–444.Google Scholar
19
19Girault, V. and Raviart, P. A.. Finite element approximation of the Navier–Stokes equations. Lecture Notes in Math.,vol. 749 (Berlin: Springer-Verlag, 1979).Google Scholar
20
20Gol'dshtein, V., Mitrea, I. and Mitrea, M.. Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. Problems in mathematical analysis No. 52. J. Math. Sci. (N. Y.)172 (2011), 347–400.Google Scholar
21
21Grisvard, P.. Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics,vol. 24, (Advanced Publishing Program) (Boston, MA: Pitman, 1985).Google Scholar
22
22Grisvard, P.. Singularities in boundary value problems. Recherches en Mathématiques Appliquées,vol. 22 (Paris, Berlin: Masson, Springer-Verlag, 1992).Google Scholar
23
23Iwaniec, T. and Martin, G.. Geometric function theory and non-linear analysis (Oxford: Oxford University Press, 2001).Google Scholar
24
24Iwaniec, T., Scott, C. and Stroffolini, B.. Nonlinear Hodge theory on manifolds with boundary. Annali Mat. Pura Appl.177 (1999), 37–115.Google Scholar
25
25Jakab, T., Mitrea, I. and Mitrea, M.. On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J.58 (2009), 2043–2071.Google Scholar
26
26Mitrea, M.. Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math.13 (2001), 531–567.Google Scholar
27
27Mitrea, D. and Mitrea, M.. Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds. J. Funct. Anal.190 (2002), 339–417.Google Scholar
28
28Morrey, C. B.. A variational method in the theory of harmonic integrals II. Amer. J. Math.78 (1956), 137–170.Google Scholar
29
29Morrey, C. B.. Multiple integrals in the calculus of variations (Berlin: Springer-Verlag, 1966).Google Scholar
30
30Morrey, C. B. and Eells, J.. A variational method in the theory of harmonic integrals. Ann. of Math.63 (1956), 91–128.Google Scholar
31
31Schwarz, G.. Hodge decomposition – A method for solving boundary value problems. Lecture Notes in Math.,vol. 1607 (Berlin: Springer-Verlag, 1995).Google Scholar
32
32Taylor, M. E.. Partial differential equations, vol. 1 (New York: Springer-Verlag, 1996).Google Scholar
33
33Von Wahl, W.. Estimating ∇u by d ivu and c urlu. Math. Methods Appl. Sci.15 (1992), 123–143.Google Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Li, Siran
2022.
A New Proof of Gaffney’s Inequality for Differential Forms on Manifolds-with-Boundary: The Variational Approach à La Kozono-Yanagisawa.
Acta Mathematica Scientia,
Vol. 42,
Issue. 4,
p.
1427.