Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T11:11:00.390Z Has data issue: false hasContentIssue false

Lifting of recollements and gluing of partial silting sets

Published online by Cambridge University Press:  07 June 2021

Manuel Saorín
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100 Espinardo, Murcia, Spain ([email protected])
Alexandra Zvonareva
Affiliation:
Universität Stuttgart, Institut für Algebra und Zahlentheorie, Pfaffenwaldring 57, D-70569, Stuttgart, Germany ([email protected])

Abstract

This paper focuses on recollements and silting theory in triangulated categories. It consists of two main parts. In the first part a criterion for a recollement of triangulated subcategories to lift to a torsion torsion-free triple (TTF triple) of ambient triangulated categories with coproducts is proved. As a consequence, lifting of TTF triples is possible for recollements of stable categories of repetitive algebras or self-injective finite length algebras and recollements of bounded derived categories of separated Noetherian schemes. When, in addition, the outer subcategories in the recollement are derived categories of small linear categories the conditions from the criterion are sufficient to lift the recollement to a recollement of ambient triangulated categories up to equivalence. In the second part we use these results to study the problem of constructing silting sets in the central category of a recollement generating the t-structure glued from the silting t-structures in the outer categories. In the case of a recollement of bounded derived categories of Artin algebras we provide an explicit construction for gluing classical silting objects.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, T. and Iyama, O.. Silting mutation in triangulated categories. J. Lond. Math. Soc. 85 (2012), 633668.CrossRefGoogle Scholar
Alonso Tarrío, L., A. Jeremías, L. and Souto Salorio, M. J.. Construction of t-structures and equivalences of derived categories. Trans. Am. Math. Soc. 355 (2003), 25232543.CrossRefGoogle Scholar
Anderson, F. W. and Fuller, K. R.. Rings and categories of modules. In Volume 13 of Graduate texts in mathematics, 2nd edn (New York: Springer-Verlag, 1992).Google Scholar
Angeleri Hügel, L., Koenig, S. and Liu, Q.. Recollements and tilting objects. J. Pure Appl. Algebra 215 (2011), 420438.CrossRefGoogle Scholar
Angeleri-Hügel, L., Koenig, S., Liu, Q. and Yang, D.. Ladders and simplicity of derived module categories. J. Algebra 472 (2017), 1566.CrossRefGoogle Scholar
Angeleri-Hügel, L., Marks, F. and Vitória, J.. Silting modules. Int. Math. Res. Not. IMRN (2016), 12511284.CrossRefGoogle Scholar
Angeleri-Hügel, L., Marks, F. and Vitória, J.. Silting modules and ring epimorphisms. Adv. Math. 303 (2016), 10441076.CrossRefGoogle Scholar
Assem, I., Simson, D. and Skowroński, A.. Elements of the representation theory of associative algebras. In Volume 65 of London mathematical society student texts, vol. 1 (Cambridge: Cambridge University Press, 2006). Techniques of representation theory.Google Scholar
Auslander, M., Reiten, I. and Smalø, S. O.. Representation theory of Artin algebras. In Volume 36 of Cambridge studies in advanced mathematics (Cambridge: Cambridge University Press, 1995).Google Scholar
Beilinson, A. A., Bernstein, J. and Deligne, P.. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy 1981), volume 100 of Astérisque, pp. 5171 (France, Paris: The Mathematics Society, 1982).Google Scholar
Beilinson, A. A., Ginsburg, V. A. and Schechtman, V. V.. Koszul duality. J. Geom. Phys. 5 (1988), 317350.CrossRefGoogle Scholar
Bondal, A. and Van den Bergh, M.. Generators and representability of functors in commutative and noncommutative geometry. J. Moscow Math. 3 (2003), 136.CrossRefGoogle Scholar
Bondarko, M. V.. Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general). J. K-Theory 6 (2010), 387504.CrossRefGoogle Scholar
Bondarko, M. V.. On torsion pairs, (well generated) weight structures, adjacent $t$-structures, and related (co)homological functors. arXiv preprint arXiv:1611.00754, 2016.Google Scholar
Bridgeland, T.. Stability conditions on triangulated categories. Ann. Math. 166 (2007), 317345.CrossRefGoogle Scholar
Buan, A.. Subcategories of the derived category and cotilting complexes. Colloq Math 1 (2001), 111.CrossRefGoogle Scholar
Chen, H. X. and Xi, C. C.. Recollements of derived categories III: finitistic dimensions. J. Lond. Math. Soc. 95 (2017), 633658.CrossRefGoogle Scholar
Gabriel, P. and Zisman, M.. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35 (New York: Springer-Verlag New York, Inc., 1967).CrossRefGoogle Scholar
Gao, N. and Psaroudakis, C.. Ladders of compactly generated triangulated categories and preprojective algebras. Appl. Categ. Struct. 26 (2018), 657679.CrossRefGoogle Scholar
Han, Y.. Recollements and hochschild theory. J. Algebra 397 (2014), 535547.CrossRefGoogle Scholar
Happel, D.. Triangulated categories in the representation theory of finite-dimensional algebras. In Volume 119 of London mathematical society lecture note series (Cambridge: Cambridge University Press, 1988).Google Scholar
Happel, D.. Reduction techniques for homological conjectures. Tsukuba J. Math. 17 (1993), 115130.CrossRefGoogle Scholar
Iyama, O. and Dong, Y.. Silting reduction and Calabi–Yau reduction of triangulated categories. Trans. Am. Math. Soc. 370 (2018), 78617898.CrossRefGoogle Scholar
Keller, B.. Deriving DG categories. Ann. Sci. École Norm. Sup. 27 (1994), 63102.CrossRefGoogle Scholar
Keller, B.. Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra 123 (1998), 223273.CrossRefGoogle Scholar
Keller, B.. On differential graded categories. In International congress of mathematicians, vol. II, pp. 151190 (Zürich: European Mathematical Society, 2006).Google Scholar
Keller, B. and Nicolás, P.. Cluster hearts and cluster tilting objects. http://www.iaz.uni-stuttgart.de/LstAGeoAlg/activities/t-workshop/NicolasNotes.pdf, 2011.Google Scholar
Keller, B. and Nicolás, P.. Weight structures and simple dg modules for positive dg algebras. Int. Math. Res. Not. IMRN 2013 (2013), 10281078.CrossRefGoogle Scholar
Keller, B. and Vossieck, D.. Aisles in derived categories. Bull. Soc. Math. Belg. Sér. A 40 (1988), 239253, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987).Google Scholar
König, S.. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J. Pure Appl. Algebra 73 (1991), 211232.CrossRefGoogle Scholar
Koenig, S. and Nagase, H.. Hochschild cohomology and stratifying ideals. J. Pure Appl. Algebra 213 (2009), 886891.CrossRefGoogle Scholar
Koenig, S. and Yang, D.. Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras. Doc. Math. 19 (2014), 403438.Google Scholar
Krause, H.. The stable derived category of a Noetherian scheme. Compos. Math. 141 (2005), 11281162.CrossRefGoogle Scholar
Krause, H. and Saorín, M.. On minimal approximations of modules. Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), volume 229 of Contemp. Math. pp. 227236 (Providence, RI: American Mathematical Society, 1998).CrossRefGoogle Scholar
Liu, Q., Vitória, J. and Yang, D.. Gluing silting objects. Nagoya Math. J. 216 (2014), 117151.CrossRefGoogle Scholar
Marks, F. and Šťovíček, J.. Universal localisations via silting. arXiv preprint arXiv:1605.04222, 2016.Google Scholar
May, J. P.. The axioms for triangulated categories. preprint, 2005.Google Scholar
Mendoza, O., Sáenz, E. C., Santiago, V. and Souto Salorio, M. J.. Auslander–Buchweitz context and co-t-structures. Appl. Categ. Struct. 21 (2013), 417440.CrossRefGoogle Scholar
Neeman, A.. The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. 25 (1992), 547566.CrossRefGoogle Scholar
Neeman, A.. Triangulated categories, volume 148 of Annals of mathematics studies (Princeton, NJ: Princeton University Press, 2001).CrossRefGoogle Scholar
Neeman, A.. The category $[\mathcal {T}^c]^{op}$ as functors on $\mathcal {T}^b_c$. arXiv preprint arXiv:1806.05777, 2018.Google Scholar
Neeman, A.. The t-structures generated by objects. arXiv preprint arXiv:1808.05267, 2018.Google Scholar
Neeman, A.. Triangulated categories with a single compact generator and a brown representability theorem. arXiv preprint arXiv:1804.02240, 2018.Google Scholar
Neeman, A. and Ranicki, A.. Noncommutative localisation in algebraic $K$-theory. I. Geom. Topol. 8 (2004), 13851425.CrossRefGoogle Scholar
Nicolás, P. and Saorín, M.. Parametrizing recollement data for triangulated categories. J. Algebra 322 (2009), 12201250.CrossRefGoogle Scholar
Nicolás, P. and Saorín, M.. Lifting and restricting recollement data. Appl. Categ. Struct. 19 (2011), 557596.CrossRefGoogle Scholar
Nicolás, P., Saorín, M. and Zvonareva, A.. Silting theory in triangulated categories with coproducts. J. Pure. Appl. Algebra 223 (2019), 22732319.CrossRefGoogle Scholar
Pauksztello, D.. A note on compactly generated co-t-structures. Commun. Algebra 40 (2012), 386394.CrossRefGoogle Scholar
Porta, M.. The Popescu–Gabriel theorem for triangulated categories. Adv. Math. 225 (2010), 16691715.CrossRefGoogle Scholar
Psaroudakis, C. and Vitória, J.. Realisation functors in tilting theory. Math. Z. 288 (2018), 9651028.CrossRefGoogle Scholar
Qin, Y. and Han, Y.. Reducing homological conjectures by $n$-recollements. Algebr. Represent. Theory 19 (2016), 377395.CrossRefGoogle Scholar
Rickard, J.. Morita theory for derived categories. J. Lond. Math. Soc. 39 (1989), 436456.CrossRefGoogle Scholar
Rickard, J.. Derived equivalences as derived functors. J. Lond. Math. Soc. 43 (1991), 3748.CrossRefGoogle Scholar
Rouquier, R.. Dimensions of triangulated categories. J. K-Theory 1 (2008), 193256.CrossRefGoogle Scholar
Saorín, M. and Šťovíček, J.. On exact categories and applications to triangulated adjoints and model structures. Adv. Math. 228 (2011), 9681007.CrossRefGoogle Scholar
Schlichting, M.. Negative $K$-theory of derived categories. Math. Z. 253 (2006), 97134.CrossRefGoogle Scholar
Šťovíček, J. and Pospíšil, D.. On compactly generated torsion pairs and the classification of co-t-structures for commutative Noetherian rings. Trans. Am. Math. Soc. 368 (2016), 63256361.CrossRefGoogle Scholar
Thomason, R. W. and Trobaugh, T.. Higher algebraic $K$-theory of schemes and of derived categories. In The Grothendieck Festschrift, volume 88 of Progr. Math. vol. III, pp. 247435 (Boston, MA: Birkhäuser Boston, 1990).CrossRefGoogle Scholar
Wei, J.. Semi-tilting complexes. Israel J. Math. 194 (2013), 871893.CrossRefGoogle Scholar
Yao, D.. Higher algebraic $K$-theory of admissible abelian categories and localization theorems. J. Pure Appl. Algebra 77 (1992), 263339.CrossRefGoogle Scholar
Zimmermann, A.. Representation theory, volume 19 of Algebra and applications (Cham: Springer, 2014).Google Scholar