No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
It is shown that if V is a closed submanifold of the open unit ball of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ 1. It is also shown that if V is a closed submanifold of ℂ2 biholomorphically equivalent to a disc, then the area of V ∩ r can grow arbitrarily rapidly as r ↗ ∞.