Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T22:52:49.888Z Has data issue: false hasContentIssue false

Asymptotics for the spectral heat function and bounds for integrals of Dirichlet eigenfunctions

Published online by Cambridge University Press:  14 November 2011

M. van den Berg
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
S. P. Watson
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK

Extract

We introduce the spectral heat function H associated with the Dirichlet-Laplace–Beltrami operator ΔM on a compact smooth Riemannian manifold M with a non-empty smooth boundary. We obtain two-term asymptotics for H without assuming any billiard conditions on M. As a corollary, we obtain estimates for the integral of the k′th Dirichlet eigenfunction of ΔM over M for k→∞.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Branson, T. P. and Gilkey, P. B.. The asymptotics of the Laplacian on a manifold with boundary. Commun. Partial Diff. Eqns 15 (1990), 245272.CrossRefGoogle Scholar
2Carslaw, H. S. and Jaeger, J. C.. Conduction of heat in solids (Oxford University Press, 1985).Google Scholar
3Davies, E. B.. Heat kernels and spectral theory (Cambridge University Press, 1989).CrossRefGoogle Scholar
4Davis, H. T.. Summation of series (San Antonio, TX: Principia Press of Trinity University, 1962).Google Scholar
5Feller, W.. An introduction to probability theory and its applications II (New York: Wiley, 1971).Google Scholar
6Gromes, D.. Über die asymptotische Verteilung der Eigenwerte des Laplace-operators für Gebiete auf der Kugeloberfläche. Math. Z. 94 (1966), 110121.CrossRefGoogle Scholar
7Safarov, Yu. and Vassiliev, D.. The asymptotic distribution of eigenvalues of partial differential operators. Translations of Mathematical Monographs, vol. 155 (Providence, RI: American Mathematical Society, 1997).Google Scholar
8Berg, M. van den. Dirichlet–Neumann bracketing for horn-shaped regions. J. Fund. Analysis 104 (1992), 110120.CrossRefGoogle Scholar
9Berg, M. van den. Heat content asymptotics for planar regions with cusps. J. Lond. Math. Soc. 57(2) (1998), 677693.CrossRefGoogle Scholar
10Berg, M. van den and Davies, E. B.. Heat flow out of regions in m. Math. Z. 202 (1989), 463482.CrossRefGoogle Scholar
11Berg, M. van den and Gilkey, P. B.. Heat content asymptotics of a Riemannian manifold with boundary. J. Fund. Analysis 120 (1994), 4871.Google Scholar
12Berg, M. van den and Gilkey, P. B.. A comparison estimate for the heat equation with an application to the heat content of the s-adic von Koch snowflake. Bull. Lond. Math. Soc. 30 (1998), 404412.CrossRefGoogle Scholar
13Berg, M. van den and Srisatkunarajah, S.. Heat flow and brownian motion for a region in 2 with a polygonal boundary. Prob. Theor. Rel. Fields 86 (1990), 4152.CrossRefGoogle Scholar