Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:53:28.418Z Has data issue: false hasContentIssue false

Almost convergent functions and their multipliers

Published online by Cambridge University Press:  14 November 2011

F. Balibrea
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Murcia 30001, Spain
G. Vera
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Murcia 30001, Spain

Synopsis

In this paper we give a characterisation of the multipliers of a space of almost convergent functions with respect to invariant means related to ergodic semigroups of operators. The characterisation extends several results of the literature.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Balibrea, F.. The multipliers of a space of almost convergent continuous functions. Colloq. Math. (to appear).Google Scholar
2Conway, J. B.. A theorem on sequential convergence of measures and some applications. Pacific J. Math. 28 (1969), 3340.CrossRefGoogle Scholar
3Ching-Chou, . The multipliers of the space of almost convergent sequences. Illinois J. Math. 16 (1972), 687694.Google Scholar
4Ching-Chou, . On topologically invariant means on a locally compact group. Trans. Amer. Math. Soc. 151 (1970), 443456.CrossRefGoogle Scholar
5, Ching-Chou and Duran, J. P.. Multipliers for the space of almost convergent functions on a semigroup. Proc. Amer. Math. Soc. 39 (1973), 125128.CrossRefGoogle Scholar
6Day, M.. Amenable semigroups. Illinois J. Math. 1 (1957), 509544.CrossRefGoogle Scholar
7Duran, J. P.. Almost convergence, summability and ergodicity. Canad. J. Math. 2 (1974), 372387.CrossRefGoogle Scholar
8Eberlein, W. F.. Abstract ergodic theorems and weak almost periodic functions. Trans. Amer. Math. Soc. 67 (1949), 217240.CrossRefGoogle Scholar
9Granirier, E.. On amenable semigroups with a finite dimensional set of invariant means. Illinois J. Math. 7 (1963), 3248.Google Scholar
10Greenleaf, F. D.. Invariant means on topological groups and their applications (Princeton: Van Nostrand, 1969).Google Scholar
11Lorentz, G. G.. A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167190.CrossRefGoogle Scholar
12Maddox, I. J.. A new type of convergence. Math. Proc. Cambridge Philos. Soc. 83 (1978), 6164.CrossRefGoogle Scholar
13Pier, J. P.. Amenable locally compact groups (New York: Wiley, 1984).Google Scholar
14Raimi, R.. Mean values and Banach limits. Proc. Amer. Math. Soc. 8 (1957), 10291036.CrossRefGoogle Scholar
15Wheeler, R.. A survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97190.Google Scholar