Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T22:21:51.916Z Has data issue: false hasContentIssue false

Trace element–gene interactions with particular reference to zinc

Published online by Cambridge University Press:  28 February 2007

John K. Chesters
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrient–gene interactions’
Copyright
The Nutrition Society

References

Berg, J. M. (1988). Proposed structure for the Zn-binding domains from transcription factor IIIA and related proteins. Proceedings of the National Academy of Sciences 85, 99102.CrossRefGoogle Scholar
Berg, J. M. (1990). Zinc fingers and other metal-binding domains – Elements for interactions between macromolecules. Journal of Biological Chemistry. 265, 65136516.CrossRefGoogle ScholarPubMed
Berg, J. M. & Merkle, D. L. (1989). On the metal ion specificity of zinc finger proteins. Journal of the American Chemical Society 111, 37593761.CrossRefGoogle Scholar
Chambers, I. & Harrison, P. R. (1987). A new puzzle in selenoprotein biosynthesis: selenocysteine seems to be encoded by a stop codon UGA. Trends in Biochemical Science 12, 255256.CrossRefGoogle Scholar
Chen, S. -Y.. (1986). Autoradiographic study of cell proliferation in acanthotic buccal epithelium of Zn-deficient rabbits. Archives of Oral Biology 31, 535539.CrossRefGoogle Scholar
Chesters, J. K. (1978). Biochemical functions of zinc in animals. World Reviews of Nutrition and Dietetics 32, 135164.CrossRefGoogle ScholarPubMed
Chesters, J. K., Petrie, L., Boyne, R. & Allen, G. (1988). The role of zinc in regulating ribosomal RNA synthesis in vivo and in vitro. Journal of Trace Elements in Experimental Medicine 1, 117127.Google Scholar
Chesters, J. K., Petrie, L. & Vint, H. (1989). Specificity and timing of the Zn2+ requirement for DNA synthesis by 3T3 cells. Experimental Cell Research 184, 499508.CrossRefGoogle Scholar
Danks, D. M. & Mercer, J. F. B. (1988). Metallothionein and ceruloplasmin genes. In Trace Elements in Man and Animals-6, pp. 287291 [Hurley, L. S., Keen, C. L., Lonnerdal, B. and Rucker, R. B., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Duncan, J. R. & Hurley, L. S. (1978). Thymidine kinase and DNA polymerase activity in normal and Zn-deficient developing rat embryos. Proceedings of the Society of Experimental Biology and Medicine 159, 3943.CrossRefGoogle Scholar
Evans, R. M. & Hollenberg, S. M. (1988). Zinc fingers: Gilt by association. Cell 52, 13.CrossRefGoogle ScholarPubMed
Evans, G. W., Majors, P. F. & Cornatzer, W. E. (1970). Induction of ceruloplasmin synthesis by copper. Biochemical and Biophysical Research Communications 41, 11201125.CrossRefGoogle Scholar
Florini, J. R. & Magri, K. A. (1989). Effects of growth factors on myogenic differentiation. American Journal of Physiology 256, C701–C711.CrossRefGoogle ScholarPubMed
Fujioka, M. & Lieberman, I. (1964). A Zn2+ requirement for synthesis of deoxyribonucleic acid by rat liver. Journal of Biological Chemistry 239, 11641167.CrossRefGoogle Scholar
Garg, L. C., Dixit, A., Webb, M. L. & Jacob, S. T. (1989). Interaction of a positive regulatory factor(s) with a 106 bp upstream region controlling transcription of metallothionein-1 gene in the liver. Journal of Biological Chemistry 264, 21342138.CrossRefGoogle Scholar
Gibson, T. J., Postma, J. P. M., Brown, R. S. & Argos, P. (1988). A model for the tertiary structure of the 28 residue DNA-binding motif (‘zinc finger’) common to many eukaryotic transcriptional regulatory proteins. Protein Engineering 2, 209218.CrossRefGoogle Scholar
Hanas, J. S., Hazuda, D. J., Bogenhagen, D. F., Wu, F. Y. -H. & Wu, C. -W.. (1983). Xenopus transcription factor A requires Zn for binding to the 5S RNA gene. Journal of Biological Chemistry 258, 1412014125.CrossRefGoogle Scholar
Harris, E. D. & Stevens, M. D. (1985). Receptors for ceruloplasmi. In aortic cell membranes. In Trace Elements in Animals and Man, pp. 320323 [Mills, C. F., Bremner, I. and Chesters, J. K., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Kadonaga, J. T., Carner, K. R., Masiarz, F. F. & Tjian, R. (1987). Isolation of cDNA encoding transcription factor Spl and functional analysis of the DNA binding domain. Cell 51, 10791090.CrossRefGoogle Scholar
Klausner, R. D. & Harford, J. B. (1989). Cis-trans models for post-transcriptional gene regulation. Science 246, 870872.CrossRefGoogle ScholarPubMed
Klug, A. & Rhodes, D. (1987). Zinc fingers: a novel protein motif for nucleic acid recognition. Trends in Biochemical Science 12, 464469.CrossRefGoogle Scholar
Leinfelder, W., Forschhammer, K., Verprek, B., Zehelein, E. & Bock, A. (1990). In vitro synthesis of selenocysteine-tRNAuca from serly-tRNAuca: involvement and characteristics of the selD gene product. Proceedings of the National Academy of Sciences 87, 543547.CrossRefGoogle Scholar
Li, N. -Q.., Reddy, P. S., Thyagaraju, K., Reddy, A. P., Hsu, B. L., Scholz, R. W., Tu, C. -P. D. & Reddy, C. C. (1990). Elevation of rat liver mRNA for Se-dependent glutathione peroxidase by selenium deficiency. Journal of Biological Chemistry 265, 108113.CrossRefGoogle Scholar
Lieberman, I., Abrams, R., Hunt, N. & Ove, P. (1963). Levels of enzyme activity and deoxyribonucleic acid synthesis in mammalian cells cultured from the animal. Journal of Biological Chemistry 238, 39553962.CrossRefGoogle ScholarPubMed
Magneson, G. R., Puvathingal, J. M. & Ray, W. J. (1987). The Concentrations of free Mg2+ and free Zn2+ in equine blood plasma, Journal of Biological Chemistry 262, 11401148.CrossRefGoogle Scholar
May, P. M., Linder, P. W. & Williams, D. R. (1977). Computer simulation of metal-ion equilibria in biofluids: models for the low molecular weight complex distribution of Ca (II) Mg (II) Mn (II) Cu (II) Zn (II) and pb (II) ions in human blood plasma. Journal of Chemical Society (1977), 588595.Google Scholar
Prasad, A. S. (1982). Zinc deficienc. In human subjects. In Clinical, Biochemical and Nutritional Aspects of Trace Elements, pp. 362 [Prasad, A. S., editor]. New York: A. R. Liss.Google Scholar
Record, I. R., Dreosti, I. E., Tulsi, R. S. & Manuel, S. J. (1985). Maternal metabolism and teratogenicity in Zn-deficient rats. Teratology 33, 311317.CrossRefGoogle Scholar
Saedi, M. S., Smith, C. G., Frampton, J., Chambers, I., Harrison, P. R. & Sunde, R. A. (1988). Effect of Selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochemical Biophysical Research Communications 153, 855861.CrossRefGoogle ScholarPubMed
Schmidt, M. C., Zhou, Q. & Berk, A. J. (1989). Spl activates transcription without enhancing DNA-binding activity of the TATA box factor. Molecular and Cellular Biology 9, 32993307.Google Scholar
Seguin, C., Felber, B. K., Carter, A. D. & Hamer, D. H. (1984). Competition for cellular factors that activate metallothionein gene transcription. Nature 312, 781785.CrossRefGoogle ScholarPubMed
Seguin, C. & Prevost, J. (1988). Detection of a nuclear protein that interacts with a metal regulated element of the mouse metallothionein-1 gene. Nucleic Acid Research 16, 1054710560.CrossRefGoogle ScholarPubMed
Stuart, G. W., Searle, P. F., Chen, H. Y., Brinster, R. L. & Palmiter, R. D. (1984). A 12 base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proceedings of the National Academy of Sciences 81, 73187322.CrossRefGoogle ScholarPubMed
Sunderman, F. W. & Barber, A. M. (1988). Finger-loops, oncogenes, and metals. Annals of Clinical and Laboratory Science 18, 267288.Google ScholarPubMed
Tao, P. & Coleman, J. E. (1990). Gal4 transcription factor is not a zinc finger but forms a Zn(II)2Cys6 binuclear cluster. Proceedings of the National Academy of Sciences 87, 20772081.Google Scholar
Toyoda, H., Himeno, S. & Imura, N. (1989). The regulation of glutathione peroxidase gene expression: implications for species differences and the effect of dietary selenium manipulation. In Seleniu. In Biology and Medicine, pp. 37 [Wendel, A., editor]. Berlin: Springer Verlag.Google Scholar
Umesono, K. & Evans, R. M. (1989). Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 11391146.CrossRefGoogle ScholarPubMed
Westin, G. & Schaffner, W. (1988 a). A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-1 gene. EMBO Journal 7, 37633770.CrossRefGoogle Scholar
Westin, G. & Schaffner, W. (1988 b). Heavy metal ions in transcription factors from HeLa cells; Spl, but not octamer transcription factor requires zinc for DNA binding and for activator function. Nucleic Acids Research 16, 57715781.CrossRefGoogle Scholar
Williams, R. B. & Chesters, J. K. (1970). The effects of early zinc deficiency on DNA synthesis and protein synthesis in the rat. British Journal of Nutrition 24, 10531059.CrossRefGoogle ScholarPubMed