Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:01:08.320Z Has data issue: false hasContentIssue false

Digestion of Non-Starch Polysaccharides by Non-Ruminant Omnivores

Published online by Cambridge University Press:  28 February 2007

J. C. Mathers
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Fibre digestion in farm livestock’
Copyright
The Nutrition Society

References

Agricultural Research Council (1984). The Nutrient Requirements of Ruminant Livestock, Suppl. no. 1. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.Google Scholar
Cheng, B. -Q.., Trimble, R. P., Illman, R. J., Stone, B. A. & Topping, D. L. (1987). Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat. British Journal of Nutrition 57, 6976.Google Scholar
Chesson, A., Richardson, A. J. & Robertson, J. A. (1985). Fibre digestion and bacteriology of the digestive tract of pigs fed cereal and vegetable fibre. In Digestive Physiology of the Pig, Report no. 580, pp. 272275. [Just, A., Jorgensen, H. and Fernandez, J. A., editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Cummings, J. H. (1981). Dietary fibre. British Medical Bulletin 37, 6570.Google Scholar
Cummings, J. H. (1984). Microbial digestion of complex carbohydrates in man. Proceedings of the Nutrition Society 43, 3544.CrossRefGoogle Scholar
Cummings, J. H. & Englyst, H. N. (1987). Fermentation in the human large intestine and the available substrates. American Journal of Clinical Nutrition 45, 12431255.CrossRefGoogle Scholar
De Graeve, K. G., Grivet, J. P., Durand, M., Beaumartin, P. & Demeyer, D. (1990). NMR study of 13CO2 incorporation into short-chain fatty acids by pig large-intestinal flora. Canadian Journal of Microbiology 36, 579582.Google Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.Google Scholar
Englyst, H. N. & Cummings, J. H. (1986). Digestion of the carbohydrates of banana (Musa paradisiaca sapientum) in the human small intestine. American Journal of Clinical Nutrition 44, 4250.Google Scholar
Englyst, H. N. & Cummings, J. H. (1987). Digestion of the polysaccharides of potato in the small intestine of man. American Journal of Clinical Nutrition 45, 423431.CrossRefGoogle Scholar
Englyst, H. N. & Kingman, S. M. (1990). Dietary fiber and resistant starch. A nutritional classification of plant polysaccharides. In Dietary Fiber, pp. 4965 [Kristchevsky, D., Bonfield, C. and Anderson, J. W., editors]. New York: Plenum Publishing Corporation.CrossRefGoogle ScholarPubMed
Fadel, J. G., Newman, C. W., Newman, R. K. & Graham, H. (1988). Effects of extrusion cooking of barley on ileal and fecal digestibility of dietary components in pigs. Canadian Journal of Animal Science 68, 891897.Google Scholar
Fadel, J. G., Newman, R. K., Newman, C. W. & Graham, H. (1989). Effects of baking hulless barley on the digestibility of dietary components as measured at the ileum and in the feces of pigs. Journal of Nutrition 119, 722726.Google Scholar
Florin, T. H. J., Neale, G. & Cummings, J. H. (1990). Dietary organic anions can make a significant contribution to the total fermentable material in the human large intestine. Proceedings of the Nutrition Society 50, 226A.Google Scholar
Gibson, G. R., Cummings, J. H., Macfarlane, G. T., Allison, C., Segal, I., Vorster, H. H. & Walker, A. R. P. (1990). Alternative pathways for hydrogen disposal in the human colon. Gut 31, 679683.Google Scholar
Gilbert, H. J. & Hazlewood, G. P. (1991). Genetic modification of fibre digestion. Proceedings of the Nutrition Society 50, 173184.Google Scholar
Goodlad, J. S. (1989). Digestion and large intestinal fermentation of pea (Pisum sativum) carbohydrates. PhD Thesis, University of Newcastle upon Tyne.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisum sativum). British Journal of Nutrition 64, 569587.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1991). Digestion by pigs of non-starch polysaccharides in wheat and raw peas (Pisum sativum) fed in mixed diets. British Journal of Nutrition 65, 259270.CrossRefGoogle ScholarPubMed
Graham, H., Hesselman, K. & Åman, P. (1986). The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet. Journal of Nutrition 116, 242251.CrossRefGoogle Scholar
Holloway, W. D., Tasman-Jones, C. & Bell, E. (1980). The hemicellulose component of dietary fiber. American Journal of Clinical Nutrition 33, 260263.CrossRefGoogle Scholar
Holloway, W. D., Tasman-Jones, C. & Lee, S. P. (1978). Digestion of certain fractions of dietary fiber in humans. American Journal of Clinical Nutrition 31, 927930.CrossRefGoogle Scholar
Key, F. B., (1990). Digestion and large intestinal fermentation of breads and haricot beans (Phaseolus vulgaris). PhD Thesis, University of Newcastle upon Tyne.Google Scholar
Key, F. B. & Mathers, J. C. (1987). Response of caecal metabolism to varying proportions of white and wholemeal breads. In Dietary Fibre: Chemical and Biological Aspects, pp. 254258 [Southgate, D. A. T., Waldron, K., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Key, F. B. & Mathers, J. C. (1990). Estimation of the digestibilities of NSP for wholemeal bread and haricot beans fed in mixed diets. Proceedings of FIBRE 90 Conference, Norwich.Google Scholar
Lajoie, S. F., Bank, S., Miller, T. L. & Wolin, M. J. (1988). Acetate production from hydrogen and (13C) carbondioxide by the microflora of human faeces. Applied and Environmental Microbiology 54, 27232727.Google Scholar
Liu, Y. F., Fadden, K., Latymer, E., Low, A. G. & Hill, M. J. (1985). The use of the cannulated pig to study the effect of dietary fibre supplements on the bacterial flora of the porcine hindgut. In Digestive Physiology of the Pig, Report no. 580, pp. 300303 [Just, A., Jorgensen, H. and Fernandez, J. A., editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Longland, A. C., Close, W. H. & Low, A. C. (1989). The role of the large intestin. In influencing the use of fibrous feeds by pigs. In Energy Metabolism of Farm Animals, pp. 111114. Wageningen: Pudoc.Google Scholar
Longland, A. C. & Low, A. G. (1989). Digestion of diets containing molassed or plain sugar-beet pulp by growing pigs. Animal Feed Science and Technology 23, 6778.Google Scholar
Longstaff, M., Knox, A. & McNab, J. M. (1988). Digestibility of pentose sugars and uronic acids and their effect on chick weight gain and caecal size. British Poultry Science 29, 379393.Google Scholar
Longstaff, M. & McNab, J. M. (1987). Digestion of starch and fibre carbohydrates in peas by adult cockerels. British Poultry Science 28, 261285.Google Scholar
Mathers, J. C., Fernandez, F., Hill, M. J., McCarthy, P. T., Shearer, M. J. & Oxley, A. (1990). Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. British Journal of Nutrition 63, 639652.Google Scholar
Mathers, J. C. & Miller, E. L. (1981). Quantitative studies of food protein degradation and the energetic efficiency of microbial protein synthesis in the rumen of sheep given chopped lucerne and rolled barley. British Journal of Nutrition 45, 587604.Google Scholar
Metcalf, A. M., Phillips, S. F., Zinsmeister, A. R., MacCarty, R. L., Beart, R. W. & Wolff, B. G. (1987). Simplified assessment of segmental colonic transit. Gastroenterology 92, 4047.Google Scholar
Millard, P. & Chesson, A. (1984). Modifications to swede (Brassica napus L.) Anterior to the terminal ileum of pigs: some implications for the analysis of dietary fibre. British Journal of Nutrition 52, 583594.Google Scholar
Nyman, M., Asp, N. -G.., Cummings, J. & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. British Journal of Nutrition 55, 487496.Google Scholar
Petterson, D. & Åman, P. (1989). Enzyme supplementation of a poultry diet containing rye and wheat. British Journal of Nutrition 62, 139149.CrossRefGoogle Scholar
Prins, R. A. & Lankhorst, A. (1977). Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiological Letters 1, 255258.Google Scholar
Sandberg, A. -S.., Andersson, H., Hallgren, B., Hasselblad, K., Isaksson, B. & Hultén, L. (1981). Experimental model for in vivo determination of dietary fibre and its effect on the absorption of nutrients in the small intestine. British Journal of Nutrition 45, 283294.Google Scholar
Sandberg, A. -S.., Andersson, H., Kivistö, B. & Sandström, B. (1986). Extrusion cooking of a high-fibre cereal product. 1. Effects on digestibility and absorption of protein, fat, starch, dietary fibre and phytate in the small intestine. British Journal of Nutrition 55, 245254.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). The microbial contribution to human faecal mass. Journal of Medical Microbiology 13, 4556.CrossRefGoogle Scholar
Stephen, A. M., Wiggins, H. S. & Cummings, J. H. (1987). Effects of changing transit time on colonic microbial metabolism in man. Gut 28, 601609.Google Scholar
Van Soest, P. J. (1984). Some physical characteristics of dietary fibres and their influence on the microbial ecology of the human colon. Proceedings of the Nutrition Society 43, 2533.CrossRefGoogle Scholar
Van Soest, P. J., Jeraci, J., Foose, T., Wrick, K. & Ehle, F. (1983). Comparative fermentation of fibre in man and other animals. In Fibre in Human and Animal Nutrition, pp. 7580 [Wallace, G. and Bell, L., editors]. Wellington: The Royal Society of New Zealand.Google Scholar
Wolin, M. J. & Miller, T. L. (1983). Carbohydrate fermentation. In Human Intestinal Microflora in Health and Disease, pp. 147165 [Hentges, D. J., editors]. New York: Academic Press.Google Scholar