Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T18:32:15.220Z Has data issue: false hasContentIssue false

What do weak magnetic fields mean for magnetospheric accretion in Herbig AeBe star+disk systems?

Published online by Cambridge University Press:  07 August 2014

A. N. Aarnio
Affiliation:
Dept. of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI, 48109, USA email: [email protected]
J. D. Monnier
Affiliation:
Dept. of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI, 48109, USA email: [email protected]
T. J. Harries
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
D. M. Acreman
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the presently favored picture of star formation, mass is transferred from disk to star via magnetospheric accretion and out of the system via magnetically driven outflows. This magnetically mediated mass flux is a fundamental process upon which the evolution of the star, disk, and forming planetary system depends. Our current understanding of these processes is heavily rooted in young solar analogs, T Tauri Stars (TTS). We have come to understand recently, however, that the higher mass pre-main sequence (PMS) Herbig AeBe (HAeBe) stars have dramatically weaker dipolar fields than their lower mass counterparts. We present our current observational and theoretical efforts to characterize magnetospherically mediated mass transfer within HAeBe star+disk systems. We have gathered a rich spectroscopic and interferometric data set for several dozen HAeBe stars in order to measure accretion and mass loss rates, assess wind and magnetospheric accretion properties, and determine how spectral lines and interferometric visibilities are diagnostic of these processes. For some targets, we have observed spectral line variability and will discuss ongoing time-series spectroscopic efforts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alecian, E., Wade, G. A., Catala, C., Grunhut, J. H., Landstreet, J. D., Bagnulo, S., Böhm, T., Folsom, C. P., Marsden, S., & Waite, I. 2013, MNRAS, 429, 1001.Google Scholar
Basri, G., Marcy, G. W., & Valenti, J. A., 1992, ApJ, 390, 622.Google Scholar
Calvet, N. & Gullbring, E., 1998, ApJ, 509, 802.CrossRefGoogle Scholar
Gregory, S. G., Donati, J.-F., Morin, J., Hussain, G. A. J., Mayne, N. J., Hillenbrand, L. A., & Jardine, M., 2012, ApJ, 755, 97.Google Scholar
Harries, T. J., 2000, MNRAS, 315, 722.Google Scholar
Herbig, G. H., 1960, ApJS, 4, 337.Google Scholar
Hernández, J., Calvet, N., Hartmann, L., Briceño, C., Sicilia-Aguilar, A., & Berlind, P., 2005, AJ, 129, 856.CrossRefGoogle Scholar
Hubrig, S., Stelzer, B., Schöller, M., Grady, C., Schütz, O., Pogodin, M. A., Curé, M., Hamaguchi, K., & Yudin, R. V., 2009, A&A, 502, 283.Google Scholar
Johns-Krull, C. M., Valenti, J. A., & Koresko, C., 1999, ApJ, 516, 900.Google Scholar
Johns-Krull, C. M., 2007, ApJ, 664, 975.Google Scholar
Königl, A., 1991, ApJL 370 L39.Google Scholar
Kurosawa, R., Harries, T. J., & Symington, N. H., 2006, MNRAS, 370, 580.CrossRefGoogle Scholar
Long, M., Romanova, M. M., & Lamb, F. K., 2012, New Astronomy, 17, 232.CrossRefGoogle Scholar
Mendigutía, I., Mora, A., Montesinos, B., Eiroa, C., Meeus, G., Merín, B., & Oudmaijer, R. D. 2012, A&A 543, A59.Google Scholar
Reipurth, B., Pedrosa, A., & Lago, M. T. V. T. 1996, A&AS, 120, 229.Google Scholar
Tout, C. A. & Pringle, J. E., 1995, MNRAS, 272, 528.Google Scholar