Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:45:25.988Z Has data issue: false hasContentIssue false

Towards Estimating the Solar Meridional Flow and Predicting the 11-yr Cycle Using Advanced Variational Data Assimilation Techniques

Published online by Cambridge University Press:  24 July 2018

Ching Pui Hung
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris, France email: [email protected] Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, 91191 Gif-Sur-Yvette, France
Allan Sacha Brun
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, 91191 Gif-Sur-Yvette, France
Alexandre Fournier
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris, France email: [email protected]
Laurène Jouve
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/IRFU Université Paris-Diderot CNRS/INSU, 91191 Gif-Sur-Yvette, France Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, 31028 Toulouse Cedex 4, France
Olivier Talagrand
Affiliation:
Laboratoire de météorologie dynamique, UMR 8539, Ecole Normale Supérieure, Paris Cedex 05, France
Mustapha Zakari
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot UMR 7154 CNRS, F-75005 Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present in this work the development of a solar data assimilation method based on an axisymmetric mean field dynamo model and magnetic surface data. Our mid-term goal is to predict the solar quasi cyclic activity. We focus on the ability of our variational data assimilation algorithm to constrain the deep meridional circulation of the Sun based on solar magnetic observations. Within a given assimilation window, the assimilation procedure minimizes the differences between data and the forecast from the model, by finding an optimal meridional circulation in the convection zone, and an optimal initial magnetic field, via a quasi-Newton algorithm. We demonstrate the capability of the technique to estimate the meridional flow by a closed-loop experiment involving 40 years of synthetic, solar-like data. We show that the method is robust in estimating a (stochastic) time-varying flow fluctuating 30% about the average, and that the horizon of predictability of the method is ~ 1 cycle length.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Babcock, H. W. 1961, ApJ, 133, 572Google Scholar
Brun, A. S. 2007, AN, 328, 329Google Scholar
Clette, F. & Lefèvre, L. 2012, SWSC, 2, A06Google Scholar
Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. 2014, Space Sci. Revs, 186, 35Google Scholar
Dikpati, M., Anderson, J. L. & Mitra, D. 2014, GRL, 41, 5361CrossRefGoogle Scholar
Dikpati, M., Anderson, J. L. & Mitra, D. 2016, ApJ, 828, 91Google Scholar
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. & Lhuillier, F. 2010, Space Sci. Revs, 155, 247Google Scholar
Gilbert, J. C. & Lemaréchal, C. 1989, Mathematical programming, 45, 407Google Scholar
Haber, D. A., Hindman, B. W., Toomre, J., Bogart, R. S., Larsen, R. M. & Hill, F. 2002, ApJ, 570, 855Google Scholar
Hale, G. E. 1908, ApJ, 28, 315Google Scholar
Hung, C. P., Jouve, L., Brun, A. S., Fournier, A. & Talagrand, O. 2015, ApJ, 814, 151Google Scholar
Hung, C. P., Brun, A. S., Fournier, A., Jouve, L., Talagrand, O. & Zakari, M. 2017, ApJ, 849, 160Google Scholar
Jouve, L., Brun, A. S. & Talagrand, O. 2011, ApJ, 735, 31Google Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 470, 239Google Scholar
Kholikov, S., Serebryanskiy, A. & Jackiewicz, J. 2014, ApJ, 784, 145Google Scholar
Leighton, R. B. 1969, ApJ, 156, 1Google Scholar
Ossendrijver, M., Stix, M., Brandenburg, A. & Rüdiger, G. 2002, A&A, 394, 735Google Scholar
Schad, A., Timmer, J. & Roth, M. 2013, ApJ, (Letters) 778, L38Google Scholar
Svalgaard, L., Cagnotti, M. & Cortesi, S. 2015, Solar Phys., 292, 34CrossRefGoogle Scholar
Talagrand, O. 2010, Data Assimilation: Making Sense Of Observations (Springer), 41-67Google Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L. & Toomre, J. 1998, ApJ, 502, L177Google Scholar
Ulrich, R. K. 2010, ApJ, 725, 658Google Scholar
Vaquero, J. M., Svalgaard, L., Carrasco, V. M. S., Clette, F., Lefèvre, L., Gallego, M. C., Arlt, R., Aparicio, A. J. P., Richard, J. G. & Howe, R. 2016, Solar Phys., 291, 3061CrossRefGoogle Scholar
Zhao, J., Bogart, R. S., Kosovichev, A. G., Duvall, T. L. & Hartlep, T. 2013, AAS/Solar Physics Division Meeting, 44, 204.02Google Scholar