Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T11:26:55.611Z Has data issue: false hasContentIssue false

Time series photometry and starspot properties

Published online by Cambridge University Press:  26 August 2011

Katalin Oláh*
Affiliation:
Konkoly Observatory, Budapest, Hungary email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Systematic efforts of monitoring starspots from the middle of the XXth century, and the results obtained from the datasets, are summarized with special focus on the observations made by automated telescopes. Multicolour photometry shows correlations between colour indices and brightness, indicating spotted regions with different average temperatures originating from spots and faculae. Long-term monitoring of spotted stars reveals variability on different timescales.

On the rotational timescale new spot appearances and starspot proper motions are followed from continuous changes of light curves during subsequent rotations. Sudden interchange of the more and less active hemispheres on the stellar surfaces is the so called flip-flop phenomenon. The existence and strength of the differential rotation is seen from the rotational signals of spots being at different stellar latitudes.

Long datasets, with only short, annual interruptions, shed light on the nature of stellar activity cycles and multiple cycles. The systematic and/or random changes of the spot cycle lengths are discovered and described using various time-frequency analysis tools. Positions and sizes of spotted regions on stellar surfaces are calculated from photometric data by various softwares. From spot positions derived for decades, active longitudes on the stellar surfaces are found, which, in case of synchronized eclipsing binaries can be well positioned in the orbital frame, with respect to, and affected by, the companion stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Baliunas, S., Nesme-Ribes, E., Sokoloff, D., Soon, W. 1996, Astron. Astrophys, 460, 848Google Scholar
Eberhard, G. & Schwarzschild, M., 1913, Astron. Astrophys, 38, 292Google Scholar
Frasca, A., Biazzo, K., Kővári, Zs. et al. 2010, Astron. Astrophys., 518, A48Google Scholar
Holzwarth, V., Schüssler, M. 2003, Astron. Astrophys., 405, 303Google Scholar
Kolláth, Z. & Oláh, K. 2009, Astron. Astrophys., 501, 695Google Scholar
Korhonen, H. & Elstner, D. 2005, Astron. Astrophys., 440, 1161CrossRefGoogle Scholar
Korhonen, H., & Järvinen, S. 2007, Binary Stars as Critical Tools & Tests in Contemporary Astrophysics (Proc. IAU Symp. 240, eds.: Hartkopf, W.I., Guinan, E.F. and Harmanec, P., Cambridge University Press) p. 453Google Scholar
Lanza, A. f., Pagano, I., Leto, G., Messina, S. et al. 2009, Astron. Astrophys., 493, 193Google Scholar
Lanza, A. F., Catalano, S., Rodonò, M. et al. 2002, Astron. Astrophys., 386, 583CrossRefGoogle Scholar
Messina, S. 2008, Astron. Astrophys., 480, 495CrossRefGoogle Scholar
Milingo, J., Saar, S., Marschall, L., & Stauffer, J. 2011, this proceedingsGoogle Scholar
Oláh, K., Jurcsik, J., Strassmeier, K. G. 2003, Astron. Astrophys., 410, 685CrossRefGoogle Scholar
Oláh, K., Kolláth, Z., & Granzer, T. et al. 2009, Astron. Astrophys., 501, 703CrossRefGoogle Scholar
Oláh, K., Korhonen, H., Kővári, Zs. et al. 2006, Astron. Astrophys., 452, 303Google Scholar
Phillips, M. J. & Hartmann, J. 1978, Astron. Astrophys, 224, 192Google Scholar
Rodonò, M., Messina, S., Lanza, A. F., & Cutispoto, G. 2004, Astron. Nachr., 325, 483CrossRefGoogle Scholar
Strassmeier, K. G., Boyd, L. J., Epand, D. H., & Granzer, Th. 1997a, Pub. Astron. Soc. Pac., 109, 697CrossRefGoogle Scholar
Strassmeier, K. G., Bartus, J., Cutispoto, G., & Rodonò, M. 1997b, A&AS, 125, 11Google Scholar
Walker, G., Croll, B., Kuschnig, R., Walker, A. et al. 2007, Astron. Astrophys, 659, 1611Google Scholar