Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T08:54:30.114Z Has data issue: false hasContentIssue false

Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

Published online by Cambridge University Press:  23 April 2012

Ján Budaj*
Affiliation:
Astronomical Institute, Tatranská Lomnica, Slovakia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code.

ϵ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves.

There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bradstreet, D. H. & Steelman, D. P. 2002, BAAS, 34, 1224Google Scholar
Budaj, J. 2011a, AJ, 141, 59CrossRefGoogle Scholar
Budaj, J. 2011b, A&A, 532, L12Google Scholar
Budaj, J. & Richards, M. T. 2004, Contrib. Astron. Obs. Skalnaté Pleso, 34, 167Google Scholar
Budaj, J. & Richards, M. T. 2010, ASP-CS, 435, 63Google Scholar
Carroll, S. M., Guinan, E. F., McCook, G. P., & Donahue, R. A. 1991, ApJ, 367, 278CrossRefGoogle Scholar
Chadima, P., Harmanec, P., Yang, S. et al. , 2010, IBVS, 5937Google Scholar
Chadima, P., Firt, R., Harmanec, P. et al. , 2011a, AJ, 142, 7CrossRefGoogle Scholar
Chadima, P., Harmanec, P., Bennett, P. D. et al. , 2011b, A&A, 530, A146Google Scholar
Clover, J., Jackson, B. V., Buffington, A., Hick, P. P., Kloppenborg, B., & Stencel, R. 2011, AAS Meeting 217, 257.02Google Scholar
Djurasevic, G., 1992, Ap&SS, 197, 17Google Scholar
Drechsel, H., Haas, S., Lorenz, R., & Mayer, P. 1994, A&A, 284, 853Google Scholar
Ferluga, S. 1990, A&A, 238, 270Google Scholar
Ghoreyshi, S. M. R., Ghanbari, J., & Salehi, F. 2010, Pub. Astron. Soc. of Australia, 28, 38CrossRefGoogle Scholar
Ghoreyshi, S. M. R., Ghanbari, J., & Salehi, F. 2011, arXiv:1108.3646Google Scholar
Hadrava, P. 1997, A&AS, 122, 581Google Scholar
Henden, A. A., 2011, Observations from the AAVSO International Database, private communication.Google Scholar
Hill, G. 1979, Publ. Dom. Ap. Obs. Victoria, 15, 297Google Scholar
Hoard, D. W., Howell, S. B., & Stencel, R. E. 2010, ApJ, 714, 549CrossRefGoogle Scholar
Hubeny, I. 1988, Computer Physics Comm., 52, 103CrossRefGoogle Scholar
Hubeny, I., Burrows, A., & Sudarsky, D. 2003, ApJ, 594, 1011CrossRefGoogle Scholar
Hubeny, I., Lanz, T., & Jeffery, C. S.: 1994, in Newsletter on Analysis of Astronomical spectra No.20, ed. Jeffery, C.S. (CCP7; St. Andrews: St. Andrews Univ.), 30Google Scholar
Huang, S. 1965, ApJ, 141, 976CrossRefGoogle Scholar
Kallrath, J., Milone, E. F., Terrell, D., & Young, A. T. 1998, ApJ, 508, 308CrossRefGoogle Scholar
Kloppenborg, B., Stencel, R., Monnier, J. D. et al. , 2010, Nature, 464, 870CrossRefGoogle Scholar
Kloppenborg, B. K., Stencel, R., Monnier, J. D. et al. , 2011, AAS Meeting 217, 257.03Google Scholar
Lucy, L. B. 1968, ApJ, 153, 877CrossRefGoogle Scholar
Miller, B., Budaj, J., Richards, M., Koubský, P., & Peters, G. 2007, ApJ, 656, 1075CrossRefGoogle Scholar
Mochnacki, S. W. & Doughty, N. A., 1972, MNRAS, 156, 51CrossRefGoogle Scholar
Pavlovski, K., Burki, G., & Mimica, P. 2006, A&A, 454, 855Google Scholar
Popper, D. M., Etzel, P. B. 1981, AJ, 86, 102CrossRefGoogle Scholar
Pribulla, T. 2004, Spectroscopically and Spatially Resolving the Components of Close Binary Stars, Hidlitch, R. W., Hensberge, H. and Pavlovski, K., ASP-CS, 318, 117Google Scholar
Prša, A. & Zwitter, T. 2005, ApJ, 628, 426CrossRefGoogle Scholar
Rucinski, S. M. 1969, AcA, 19, 245Google Scholar
Rucinski, S. M. 1973, AcA, 23, 79Google Scholar
Sadakane, K., Kambe, E., Sato, B., Honda, S., & Hashimoto, O. 2010, PASJ, 62, 1381CrossRefGoogle Scholar
Stefanik, R. P., Torres, G., Lovegrove, J. et al. , 2010, AJ, 139, 1254CrossRefGoogle Scholar
Šejnová, K., Votruba, V., & Koubský, P. 2011, these proceedingsGoogle Scholar
Tamuz, O., Mazeh, T., North, P., 2006, MNRAS, 367, 1521CrossRefGoogle Scholar
Tkachenko, A., Lehmann, H., & Mkrtichian, D. 2010, AJ, 139, 1327CrossRefGoogle Scholar
Wilson, R. E. 1971, ApJ, 170, 529CrossRefGoogle Scholar
Wilson, R. E. & Devinney, E. J. 1971, ApJ, 166, 605CrossRefGoogle Scholar
Wolk, S. J., Pillitteri, I., Guinan, E., & Stencel, R. 2010, AJ, 140, 595CrossRefGoogle Scholar
Wood, D. B. 1971, AJ, 76, 701CrossRefGoogle Scholar